Alfredo Navarro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8377471/publications.pdf

Version: 2024-02-01

64 papers

1,302 citations

471509 17 h-index 35 g-index

64 all docs

64
docs citations

64 times ranked 462 citing authors

#	Article	IF	CITATIONS
1	Short and long fatigue crack growth: A unified model. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1988, 57, 15-36.	0.6	215
2	A MODEL FOR SHORT FATIGUE CRACK PROPAGATION WITH AN INTERPRETATION OF THE SHORT-LONG CRACK TRANSITION. Fatigue and Fracture of Engineering Materials and Structures, 1987, 10, 169-186.	3.4	100
3	A MICROSTRUCTURALLY-SHORT FATIGUE CRACK GROWTH EQUATION. Fatigue and Fracture of Engineering Materials and Structures, 1988, 11, 383-396.	3.4	100
4	Fatigue crack growth modelling by successive blocking of dislocations. Proceedings of the Royal Society A, 1992, 437, 375-390.	0.9	85
5	An alternative model of the blocking of dislocations at grain boundaries. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1988, 57, 37-42.	0.6	79
6	Fatigue crack growth threshold conditions at notches. Part I: theory. Fatigue and Fracture of Engineering Materials and Structures, 2000, 23, 113-121.	3.4	59
7	Considerations of grain orientation and work hardening on short-fatigue-crack modelling. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1990, 61, 435-449.	0.6	52
8	A two-stage micromechanics model for short fatigue cracks. Engineering Fracture Mechanics, 1993, 44, 425-436.	4.3	49
9	On the estimation of fatigue failure under fretting conditions using notch methodologies. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26, 469-478.	3.4	38
10	Compact solution for a multizone BCS crack model with bounded or unbounded end conditions. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1988, 57, 43-50.	0.6	31
11	Fatigue crack growth threshold conditions at notches. Part II: generalization and application to experimental results. Fatigue and Fracture of Engineering Materials and Structures, 2000, 23, 123-128.	3.4	31
12	Fatigue life and crack growth direction in 7075-T6 aluminium alloy specimens with a circular hole under biaxial loading. International Journal of Fatigue, 2019, 125, 222-236.	5.7	28
13	Application of a microstructural model for predicting notch fatigue limits under mode I loading. International Journal of Fatigue, 2009, 31, 943-951.	5.7	21
14	Biomechanical analysis of a new minimally invasive system for osteosynthesis of pubis symphysis disruption. Injury, 2012, 43, S20-S27.	1.7	21
15	A micromechanical approach to fatigue in small notches*. Fatigue and Fracture of Engineering Materials and Structures, 2005, 28, 1035-1045.	3.4	19
16	A micromechanical model for small fatigue crack growth: an approach based on two threshold conditions. Fatigue and Fracture of Engineering Materials and Structures, 2009, 32, 515-524.	3.4	19
17	Grain size effects on notch sensitivity. International Journal of Fatigue, 2015, 70, 205-215.	5.7	19
18	The variation of resonance frequency in fatigue tests as a tool for in-situ identification of crack initiation and propagation, and for the determination of cracked areas. International Journal of Fatigue, 2015, 70, 374-382.	5.7	18

#	Article	IF	Citations
19	Two-parameter fatigue crack growth driving force: Successive blocking of the monotonic and cyclic plastic zones at microstructural barriers. International Journal of Fatigue, 2013, 46, 27-34.	5.7	17
20	Predicting the fretting fatigue limit for spherical contact. Engineering Failure Analysis, 2004, 11, 727-736.	4.0	16
21	Fatigue limits for notches of arbitrary profile. International Journal of Fatigue, 2013, 48, 68-79.	5.7	16
22	Biaxial fatigue limits and crack directions for stainless steel specimens with circular holes. Engineering Fracture Mechanics, 2017, 174, 139-154.	4.3	16
23	Growth of very long "short cracks―initiated at holes. International Journal of Fatigue, 2015, 71, 64-74.	5.7	15
24	A constitutive model for elastoplastic deformation under variable amplitude multiaxial cyclic loading. International Journal of Fatigue, 2005, 27, 838-846.	5.7	14
25	A microstructural model for biaxial fatigue conditions. International Journal of Fatigue, 2011, 33, 1048-1054.	5.7	14
26	Stage I crack directions under in-phase axial–torsion fatigue loading for AISI 304L stainless steel. International Journal of Fatigue, 2015, 80, 10-21.	5.7	14
27	Calculating fatigue limits of notched components of arbitrary size and shape with cracks growing in mode I. International Journal of Fatigue, 2015, 74, 142-155.	5.7	14
28	Fatigue limit predictions at stress concentrations using FEA and microstructural fracture mechanics. Theoretical and Applied Fracture Mechanics, 2017, 87, 11-20.	4.7	14
29	Naked eye observations of microstructurally short fatigue cracks. International Journal of Fatigue, 2013, 56, 8-16.	5.7	13
30	Compact formulation for modelling cracks in infinite solids using distributed dislocations. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 81-92.	0.6	12
31	Influence of R ratio and stick zone eccentricity on the prediction of the fretting fatigue limit with spherical contact. International Journal of Fatigue, 2007, 29, 1208-1219.	5.7	11
32	Application of Digital Image Correlation (DIC) in resonance machines for measuring fatigue crack growth. Frattura Ed Integrita Strutturale, 2014, 8, 369-374.	0.9	11
33	Calculating crack initiation directions for in-phase biaxial fatigue loading. International Journal of Fatigue, 2014, 58, 166-171.	5.7	11
34	On the estimation of microstructural effects in the near-threshold fatigue of small cracks. Journal of Strain Analysis for Engineering Design, 2008, 43, 337-347.	1.8	9
35	Fatigue failure assessment under stress gradients using small crack fatigue concepts. Engineering Failure Analysis, 2009, 16, 2646-2657.	4.0	9
36	Microstructural model for predicting high cycle fatigue strength in the presence of holes under proportional biaxial loading. Theoretical and Applied Fracture Mechanics, 2014, 73, 27-38.	4.7	9

#	Article	IF	CITATIONS
37	A CONSTITUTIVE MODEL FOR ELASTIC-PLASTIC DEFORMATION UNDER CYCLIC MULTIAXIAL STRAINING. Fatigue and Fracture of Engineering Materials and Structures, 1997, 20, 747-758.	3.4	8
38	Fatigue Life Calculation under Thermal Multiaxial Stresses in EGR Coolers. SAE International Journal of Materials and Manufacturing, 2015, 8, 632-639.	0.3	8
39	Numerical implementation of a multiaxial cyclic plasticity model for the Local Strain method in low cycle fatigue. Theoretical and Applied Fracture Mechanics, 2015, 80, 111-119.	4.7	7
40	ON DIMENSIONAL ANALYSIS OF FATIGUE CRACK GROWTH RATE AND GEOMETRICAL SIMILITUDE OF CRACKS. Fatigue and Fracture of Engineering Materials and Structures, 1987, 9, 373-378.	3.4	6
41	A multiaxial stress-strain analysis for proportional cyclic loading. Journal of Strain Analysis for Engineering Design, 1993, 28, 125-133.	1.8	6
42	Biaxial cyclic plasticity experiments and application of a constitutive model for cyclically stable material behaviour. International Journal of Fatigue, 2016, 83, 240-252.	5.7	6
43	An unconditionally convergent iterative algorithm for the intersection of Neuber's and Molski–Glinka's rules with the Ramberg–Osgood stress–strain relationship. Theoretical and Applied Fracture Mechanics, 2014, 69, 53-62.	4.7	5
44	Non-propagating cracks in notched components at the fatigue limit analysed with a microstructural model. Theoretical and Applied Fracture Mechanics, 2018, 95, 119-126.	4.7	5
45	Initiation and growth behavior of very-long microstructurally short fatigue cracks. Frattura Ed Integrita Strutturale, 2013, 7, 138-144.	0.9	4
46	Application of the Microstructural Finite Element Alternating Method to assess the impact of specimen size and distributions of contact/residual stress fields on fatigue strength. Computers and Structures, 2017, 179, 15-26.	4.4	4
47	Variations on a critical distance theme. International Journal of Fatigue, 2021, 152, 106453.	5 . 7	4
48	Biaxial fatigue tests and crack paths for AISI 304L stainless steel. Frattura Ed Integrita Strutturale, 2014, 8, 273-281.	0.9	3
49	Plasticity theory for the multiaxial Local Strain-Life Method. International Journal of Fatigue, 2017, 100, 575-582.	5.7	3
50	Biaxial fatigue tests of notched specimens for AISI 304L stainless steel. Frattura Ed Integrita Strutturale, 2016, 10, 228-233.	0.9	3
51	Directions of high cycle fatigue cracks emanating from circular notches studied by optical profilometry. International Journal of Fatigue, 2022, 165, 107117.	5.7	3
52	A simplified plasticity model for multiaxial non-proportional cyclic loading. Theoretical and Applied Fracture Mechanics, 2019, 103, 102247.	4.7	2
53	Analysis of biaxial fatigue limit models for cases with circular notches. International Journal of Fatigue, 2022, 162, 106981.	5.7	2
54	Cumulative Fatigue Damage Conference. International Journal of Fatigue, 2005, 27, 837-837.	5.7	1

#	Article	lF	CITATIONS
55	A new proposal of effective stress and critical distance for fatigue at notches. MATEC Web of Conferences, 2014, 12, 09002.	0.2	1
56	Effect of the notch-component relative size on the notch fatigue limit of AISI 304L specimens under push–pull tests. Journal of Strain Analysis for Engineering Design, 2019, 54, 379-389.	1.8	1
57	Crack paths for mild steel specimens with circular holes in high cycle fatigue. Procedia Structural Integrity, 2022, 39, 111-119.	0.8	1
58	Stress intensity factors for circumferentially cracked thin cylinders subjected to bending. International Journal of Fracture, 1992, 56, R3-R8.	2.2	0
59	EDITORIAL: A SPANISH SPECIAL ISSUE. Fatigue and Fracture of Engineering Materials and Structures, 1997, 20, iii-iii.	3.4	0
60	Fatigue notch sensitivity as a function of the notch to grain size relationship. MATEC Web of Conferences, 2014, 12, 04016.	0.2	0
61	Numerical implementation of a multiaxial cyclic plasticity model for the Local Strain Method in low cycle fatigue. Frattura Ed Integrita Strutturale, 2014, 8, 153-161.	0.9	0
62	Plastic flow equations for the local strain approach in the multiaxial case. Frattura Ed Integrita Strutturale, 2016, 10, 8-14.	0.9	0
63	An iterative technique to assess the fatigue strength of notched components. Procedia Structural Integrity, 2020, 28, 1167-1175.	0.8	0
64	Compact formulation for modelling cracks in infinite solids using distributed dislocations. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 81-92.	0.6	0