
Shun Dekura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8377392/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conjugation length effect on the conducting behavior of single-crystalline oligo(3,4-ethylenedioxythiophene) (<i>n</i> EDOT) radical cation salts. Physical Chemistry Chemical Physics, 2022, 24, 9130-9134.	2.8	4
2	Hydrogen absorption and diffusion behaviors in cube-shaped palladium nanoparticles revealed by ambient-pressure X-ray photoelectron spectroscopy. Applied Surface Science, 2022, 587, 152797.	6.1	7
3	Proton–electron-coupled functionalities of conductivity, magnetism, and optical properties in molecular crystals. Chemical Communications, 2022, 58, 5668-5682.	4.1	7
4	Band-filling effects in single-crystalline oligomer models for doped PEDOT: 3,4-ethylenedioxythiophene (EDOT) dimer salt with hydrogen-bonded infinite sulfate anion chains. Journal of Materials Chemistry C, 2022, 10, 7543-7551.	5.5	3
5	Molecular Arrangement Control of [1]Benzothieno[3,2- <i>b</i>][1]benzothiophene (BTBT) via Charge-Assisted Hydrogen Bond. Bulletin of the Chemical Society of Japan, 2022, 95, 1178-1182.	3.2	9
6	Modulation of the electronic states and magnetic properties of nickel catecholdithiolene complex by oxidation-coupled deprotonation. Journal of Materials Chemistry C, 2021, 9, 10718-10726.	5.5	5
7	The Simplest Model for Doped Poly(3,4â€ethylenedioxythiophene) (PEDOT): Singleâ€crystalline EDOT Dimer Radical Cation Salts. Chemistry - A European Journal, 2021, 27, 6696-6700.	3.3	6
8	The Simplest Model for Doped Poly(3,4â€ethylenedioxythiophene) (PEDOT): Singleâ€crystalline EDOT Dimer Radical Cation Salts. Chemistry - A European Journal, 2021, 27, 6597-6597.	3.3	0
9	Ferroelectric and Spin Crossover Behavior in a Cobalt(II) Compound Induced by Polarâ€Ligandâ€&ubstituent Motion. Angewandte Chemie - International Edition, 2021, 60, 12717-12722.	13.8	30
10	Ferroelectric and Spin Crossover Behavior in a Cobalt(II) Compound Induced by Polarâ€Ligandâ€Substituent Motion. Angewandte Chemie, 2021, 133, 12827-12832.	2.0	4
11	Proton Conduction Mechanism for Anhydrous Imidazolium Hydrogen Succinate Based on Local Structures and Molecular Dynamics. Journal of Physical Chemistry Letters, 2021, 12, 5390-5394.	4.6	18
12	Ferromagnetism out of charge fluctuation of strongly correlated electrons in P-(BEDT-TTF)2Hg(SCN)2Br. Npj Quantum Materials, 2021, 6, .	5.2	4
13	Effects of mechanical grinding on the phase behavior and anhydrous proton conductivity of imidazolium hydrogen succinate. Solid State Ionics, 2021, 372, 115775.	2.7	4
14	Anhydrous Purely Organic Solid-State Proton Conductors: Effects of Molecular Dynamics on the Proton Conductivity of Imidazolium Hydrogen Dicarboxylates. Journal of the Physical Society of Japan, 2020, 89, 051008.	1.6	13
15	Confined water-mediated high proton conduction in hydrophobic channel of a synthetic nanotube. Nature Communications, 2020, 11, 843.	12.8	116
16	New Insights on the Formation Process and Thermodynamics of the α-Phase PdH(D)x through Direct Enthalpy Measurement of H(D) Dissolution. Journal of Physical Chemistry C, 2020, 124, 8663-8668.	3.1	4
17	Vapochromism induced by intermolecular electron transfer coupled with hydrogen-bond formation in zinc dithiolene complex. Journal of Materials Chemistry C, 2020, 8, 14939-14947.	5.5	11
18	The relationship between crystalline disorder and electronic structure of Pd nanoparticles and their hydrogen storage properties. RSC Advances, 2019, 9, 21311-21317.	3.6	8

SHUN DEKURA

#	Article	IF	CITATIONS
19	Hydrogen in Palladium and Storage Properties of Related Nanomaterials: Size, Shape, Alloying, and Metalâ€Organic Framework Coating Effects. ChemPhysChem, 2019, 20, 1158-1176.	2.1	80
20	MOP × MOF: Collaborative Combination of Metal–Organic Polyhedra and Metal–Organic Framework for Proton Conductivity. ACS Applied Materials & Interfaces, 2019, 11, 12639-12646.	8.0	45
21	Enhancement of Ionic Conductivity in Organic Ionic Plastic Crystals by Introducing Racemic Ammonium Ions. Chemistry Letters, 2018, 47, 497-499.	1.3	10
22	Nonpolar-to-Polar Phase Transition of a Chiral Ionic Plastic Crystal and Switch of the Rotation Symmetry. Journal of the American Chemical Society, 2018, 140, 291-297.	13.7	30
23	The Electronic State of Hydrogen in the αâ€Phase of the Hydrogenâ€Storage Material PdH(D) _{<i>x</i>} : Does a Chemical Bond Between Palladium and Hydrogen Exist?. Angewandte Chemie, 2018, 130, 9971-9975.	2.0	6
24	The Electronic State of Hydrogen in the αâ€Phase of the Hydrogenâ€Storage Material PdH(D) _{<i>x</i>} : Does a Chemical Bond Between Palladium and Hydrogen Exist?. Angewandte Chemie - International Edition, 2018, 57, 9823-9827.	13.8	25
25	Stacking fault density and bond orientational order of fcc ruthenium nanoparticles. Applied Physics Letters, 2017, 111, 253101.	3.3	8
26	Defect Control To Enhance Proton Conductivity in a Metal–Organic Framework. Chemistry of Materials, 2015, 27, 2286-2289.	6.7	206
27	The Role of a Three Dimensionally Ordered Defect Sublattice on the Acidity of a Sulfonated Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 11498-11506.	13.7	178
28	Shape-Dependent Hydrogen-Storage Properties in Pd Nanocrystals: Which Does Hydrogen Prefer, Octahedron (111) or Cube (100)?. Journal of the American Chemical Society, 2014, 136, 10222-10225.	13.7	104
29	First In Situ NMR Observation of Hydrogen Adsorbed inside [Cu3(btc)2] at Ambient Temperature and Pressure. Chemistry Letters, 2014, 43, 1363-1364.	1.3	1