

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8377150/publications.pdf Version: 2024-02-01

VANILEE

#	Article	lF	CITATIONS
1	A Protein Nanocarrier from Charge-Conversion Polymer in Response to Endosomal pH. Journal of the American Chemical Society, 2007, 129, 5362-5363.	6.6	381
2	Chargeâ€Conversional Polyionic Complex Micelles—Efficient Nanocarriers for Protein Delivery into Cytoplasm. Angewandte Chemie - International Edition, 2009, 48, 5309-5312.	7.2	311
3	Chargeâ€Conversion Ternary Polyplex with Endosome Disruption Moiety: A Technique for Efficient and Safe Gene Delivery. Angewandte Chemie - International Edition, 2008, 47, 5163-5166.	7.2	206
4	Efficient Delivery of Bioactive Antibodies into the Cytoplasm of Living Cells by Charge onversional Polyion Complex Micelles. Angewandte Chemie - International Edition, 2010, 49, 2552-2555.	7.2	182
5	Visualization of the Degradation of a Disulfide Polymer, Linear Poly(ethylenimine sulfide), for Gene Delivery. Bioconjugate Chemistry, 2007, 18, 13-18.	1.8	178
6	Biodegradable polyester, poly[alpha-(4-aminobutyl)-L-glycolic acid], as a non-toxic gene carrier. Pharmaceutical Research, 2000, 17, 811-816.	1.7	172
7	Polyplexes Assembled with Internally Quaternized PAMAM-OH Dendrimer and Plasmid DNA Have a Neutral Surface and Gene Delivery Potency. Bioconjugate Chemistry, 2003, 14, 1214-1221.	1.8	171
8	Enhanced endosomal escape of siRNA-incorporating hybrid nanoparticles from calcium phosphate and PEG-block charge-conversional polymer for efficient gene knockdown with negligible cytotoxicity. Biomaterials, 2011, 32, 3106-3114.	5.7	157
9	Cationic Hyperbranched Poly(amino ester):Â A Novel Class of DNA Condensing Molecule with Cationic Surface, Biodegradable Three-Dimensional Structure, and Tertiary Amine Groups in the Interior. Journal of the American Chemical Society, 2001, 123, 2460-2461.	6.6	151
10	Biosignal-sensitive polyion complex micelles for the delivery of biopharmaceuticals. Soft Matter, 2009, 5, 3810.	1.2	145
11	Introduction of stearoyl moieties into a biocompatible cationic polyaspartamide derivative, PAsp(DET), with endosomal escaping function for enhanced siRNA-mediated gene knockdown. Journal of Controlled Release, 2010, 145, 141-148.	4.8	114
12	Poly(ethylene oxide sulfide):Â New Poly(ethylene glycol) Derivatives Degradable in Reductive Conditions. Biomacromolecules, 2005, 6, 24-26.	2.6	87
13	Effective healing of diabetic skin wounds by using nonviral gene therapy based on minicircle vascular endothelial growth factor DNA and a cationic dendrimer. Journal of Gene Medicine, 2012, 14, 272-278.	1.4	75
14	Challenge to overcome current limitations of cell-penetrating peptides. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140604.	1.1	69
15	Oriented Immobilization of Antibodies with GST-Fused Multiple Fc-Specific B-Domains on a Gold Surface. Analytical Chemistry, 2007, 79, 546-556.	3.2	64
16	Development of anti-biofouling interface on hydroxyapatite surface by coating zwitterionic MPC polymer containing calcium-binding moieties to prevent oral bacterial adhesion. Acta Biomaterialia, 2016, 40, 70-77.	4.1	64
17	Biodegradable branched poly(ethylenimine sulfide) for gene delivery. Biomaterials, 2010, 31, 988-997.	5.7	62
18	pDNA/poly(<scp>L</scp> â€lysine) Polyplexes Functionalized with a pHâ€Sensitive Charge onversional Poly(aspartamide) Derivative for Controlled Gene Delivery to Human Umbilical Vein Endothelial Cells. Macromolecular Rapid Communications, 2010, 31, 1181-1186.	2.0	58

#	Article	IF	CITATIONS
19	Novel lower critical solution temperature phase transition materials effectively control osmosis by mild temperature changes. Chemical Communications, 2012, 48, 3845.	2.2	58
20	Cellâ€Penetrating, Dimeric αâ€Helical Peptides: Nanomolar Inhibitors of HIVâ€1 Transcription. Angewandte Chemie - International Edition, 2014, 53, 10086-10089.	7.2	47
21	Preparation of non-aggregated fluorescent nanodiamonds (FNDs) by non-covalent coating with a block copolymer and proteins for enhancement of intracellular uptake. Molecular BioSystems, 2013, 9, 1004.	2.9	46
22	Apoptosis Inducing, Conformationally Constrained, Dimeric Peptide Analogs of KLA with Submicromolar Cell Penetrating Abilities. Biomacromolecules, 2014, 15, 3746-3752.	2.6	46
23	Scalable and Isotropic Expansion of Tissues with Simply Tunable Expansion Ratio. Advanced Science, 2019, 6, 1901673.	5.6	46
24	Lower critical solution temperature (LCST) phase separation of glycol ethers for forward osmotic control. Physical Chemistry Chemical Physics, 2014, 16, 5319-5325.	1.3	44
25	Comparison of pH-sensitive degradability of maleic acid amide derivatives. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2364-2367.	1.0	44
26	Intraperitoneal gene delivery mediated by a novel cationic liposome in a peritoneal disseminated ovarian cancer model. Gene Therapy, 2002, 9, 859-866.	2.3	43
27	A new biodegradable crosslinked polyethylene oxide sulfide (PEOS) hydrogel for controlled drug release. International Journal of Pharmaceutics, 2009, 374, 58-65.	2.6	42
28	Anti-inflammatory and Antibacterial Effects of Covalently Attached Biomembrane-Mimic Polymer Grafts on Gore-Tex Implants. ACS Applied Materials & Interfaces, 2017, 9, 19161-19175.	4.0	42
29	PAMAM dendrimer with a 1,2-diaminoethane surface facilitates endosomal escape for enhanced pDNA delivery. Polymer, 2011, 52, 339-346.	1.8	40
30	Alleviation of capsular formations on silicone implants in rats using biomembrane-mimicking coatings. Acta Biomaterialia, 2014, 10, 4217-4225.	4.1	37
31	pH-Activatable cell penetrating peptide dimers for potent delivery of anticancer drug to triple-negative breast cancer. Journal of Controlled Release, 2021, 330, 898-906.	4.8	36
32	α-Helical cell-penetrating peptide-mediated nasal delivery of resveratrol for inhibition of epithelial-to-mesenchymal transition. Journal of Controlled Release, 2020, 317, 181-194.	4.8	35
33	Construction of histidine-containing hydrocarbon stapled cell penetrating peptides for <i>in vitro</i> and <i>in vivo</i> delivery of siRNAs. Chemical Science, 2018, 9, 3820-3827.	3.7	34
34	Chemoselective Tyrosine Bioconjugation through Sulfate Click Reaction. Chemistry - A European Journal, 2018, 24, 10948-10952.	1.7	34
35	Highly Efficient Photothermal Therapy with Cell-Penetrating Peptide-Modified Bumpy Au Triangular Nanoprisms using Low Laser Power and Low Probe Dose. Nano Letters, 2021, 21, 731-739.	4.5	34
36	Photoswitching of Cell Penetration of Amphipathic Peptides by Control of α-Helical Conformation. Biomacromolecules, 2018, 19, 2863-2869.	2.6	30

#	Article	IF	CITATIONS
37	Enhanced transfection with silica-coated polyplexes loading plasmid DNA. Biomaterials, 2010, 31, 4764-4770.	5.7	29
38	Upper critical solution temperature (UCST) phase transition of halide salts of branched polyethylenimine and methylated branched polyethylenimine in aqueous solutions. Chemical Communications, 2016, 52, 509-512.	2.2	28
39	Delivery of Nucleic Acid Drugs. Advances in Polymer Science, 2011, , 95-134.	0.4	27
40	Proline Hinged Amphipathic α-Helical Peptide Sensitizes Gram-Negative Bacteria to Various Gram-Positive Antibiotics. Journal of Medicinal Chemistry, 2020, 63, 14937-14950.	2.9	27
41	New cationic lipids for gene transfer with high efficiency and low toxicity: T-shape cholesterol ester derivatives. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2637-2641.	1.0	26
42	Circulatory osmotic desalination driven by a mild temperature gradient based on lower critical solution temperature (LCST) phase transition materials. Physical Chemistry Chemical Physics, 2013, 15, 19510.	1.3	25
43	Nonhemolytic Cell-Penetrating Peptides: Site Specific Introduction of Glutamine and Lysine Residues into the α-Helical Peptide Causes Deletion of Its Direct Membrane Disrupting Ability but Retention of Its Cell Penetrating Ability. Biomacromolecules, 2016, 17, 3007-3015.	2.6	24
44	Conformational recovery and preservation of protein nature from heat-induced denaturation by water-soluble phospholipid polymer conjugation. Biomaterials, 2009, 30, 4859-4867.	5.7	23
45	Enzyme-responsive destabilization of stabilized plasmid-lipid nanoparticles as an efficient gene delivery. European Journal of Pharmaceutical Sciences, 2016, 91, 20-30.	1.9	22
46	Calcium-Binding Polymer-Coated Poly(lactide- <i>co</i> -glycolide) Microparticles for Sustained Release of Quorum Sensing Inhibitors to Prevent Biofilm Formation on Hydroxyapatite Surfaces. ACS Applied Materials & Interfaces, 2019, 11, 7686-7694.	4.0	22
47	Nonviral gene therapy in vivo with PAM-RG4/apoptin as a potential brain tumor therapeutic. International Journal of Nanomedicine, 2013, 8, 821.	3.3	21
48	Liquid crystal nanoparticle formulation as an oral drug delivery system for liver-specific distribution. International Journal of Nanomedicine, 2016, 11, 853.	3.3	20
49	Systematic structure control of ammonium iodide salts as feasible UCST-type forward osmosis draw solutes for the treatment of wastewater. Journal of Materials Chemistry A, 2018, 6, 1255-1265.	5.2	19
50	Synthesis of poly(disulfide)s with narrow molecular weight distributions <i>via</i> lactone ring-opening polymerization. Chemical Science, 2020, 11, 4882-4886.	3.7	19
51	Thermosensitivity control of polyethlyenimine by simple acylation. Polymer, 2011, 52, 1367-1374.	1.8	18
52	Membrane of Functionalized Reduced Graphene Oxide Nanoplates with Angstrom-Level Channels. Scientific Reports, 2016, 6, 28052.	1.6	18
53	Efficient reduction of fibrous capsule formation around silicone breast implants densely grafted with 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers by heat-induced polymerization. Biomaterials Science, 2020, 8, 1580-1591.	2.6	18
54	Effect of hydrophilic polymer conjugation on heat-induced conformational changes in a protein. Acta Biomaterialia, 2011, 7, 1477-1484.	4.1	17

#	Article	IF	CITATIONS
55	Preparation of pH-sensitive CaP nanoparticles coated with a phosphate-based block copolymer for efficient gene delivery. Polymer, 2012, 53, 4678-4685.	1.8	17
56	Surface zwitterionization: Effective method for preventing oral bacterial biofilm formation on hydroxyapatite surfaces. Applied Surface Science, 2018, 427, 517-524.	3.1	17
57	Analysis of the Relationship between the Molecular Weight and Transfection Efficiency/Cytotoxicity of Poly-L-arginine on a Mammalian Cell Line. Bulletin of the Korean Chemical Society, 2009, 30, 927-930.	1.0	17
58	Multimeric Amphipathic αâ€Helical Sequences for Rapid and Efficient Intracellular Protein Transport at Nanomolar Concentrations. Advanced Science, 2018, 5, 1800240.	5.6	16
59	Oligomer Formation Propensities of Dimeric Bundle Peptides Correlate with Cell Penetration Abilities. ACS Central Science, 2018, 4, 885-893.	5.3	16
60	Introduction of pH-sensitive upper critical solution temperature (UCST) properties into branched polyethylenimine. Polymer, 2013, 54, 5338-5344.	1.8	15
61	Covalently Grafted 2-Methacryloyloxyethyl Phosphorylcholine Networks Inhibit Fibrous Capsule Formation around Silicone Breast Implants in a Porcine Model. ACS Applied Materials & Interfaces, 2020, 12, 30198-30212.	4.0	15
62	Synthesis of biomembrane-mimic polymers with various phospholipid head groups. Polymer, 2014, 55, 517-524.	1.8	14
63	Electrodeless Reverse Electrodialysis Patches as an Ionic Power Source for Active Transdermal Drug Delivery. Advanced Functional Materials, 2018, 28, 1705952.	7.8	14
64	Cellâ€Penetrating, Dimeric αâ€Helical Peptides: Nanomolar Inhibitors of HIVâ€1 Transcription. Angewandte Chemie, 2014, 126, 10250-10253.	1.6	11
65	Intracellular delivery of immunoglobulin G at nanomolar concentrations with domain Z-fused multimeric α-helical cell penetrating peptides. Journal of Controlled Release, 2021, 330, 161-172.	4.8	11
66	A medusa-like β-cyclodextrin with 1-methyl-2-(2′-carboxyethyl) maleic anhydrides, a potential carrier for pH-sensitive drug delivery. Journal of Drug Targeting, 2014, 22, 658-668.	2.1	10
67	Ring Opening Metathesis Polymerization of Bicyclic α,βâ€Unsaturated Anhydrides for Readyâ€ŧoâ€beâ€grafted Polymers Having Tailored pHâ€Responsive Degradability. Angewandte Chemie - International Edition, 2018, 57, 12468-12472.	7.2	9
68	Development of poly(D,L-lactic-co-glycolic acid) films coated with biomembrane-mimicking polymers for anti-adhesion activity. Materials Science and Engineering C, 2021, 120, 111780.	3.8	8
69	Augmented osteogenesis of mesenchymal stem cells using a fragmented Runx2 mixed with cell-penetrating, dimeric a-helical peptide. European Journal of Pharmaceutical Sciences, 2020, 144, 105210.	1.9	7
70	Inside Cover: Charge-Conversional Polyionic Complex Micelles-Efficient Nanocarriers for Protein Delivery into Cytoplasm (Angew. Chem. Int. Ed. 29/2009). Angewandte Chemie - International Edition, 2009, 48, 5220-5220.	7.2	6
71	Light-tunable thermoresponsive behavior of branched polyethylenimine derivatives in water. Polymer, 2016, 107, 37-43.	1.8	6
72	<i>De novo</i> formation of citrate-based fluorophores on N-termini of peptides and proteins in cells and tissues. Chemical Communications, 2020, 56, 74-77.	2.2	6

#	Article	IF	CITATIONS
73	Guanidine cyclic diimides and their polymers. Chemical Communications, 2019, 55, 10222-10225.	2.2	5
74	One-bead-one-compound screening approach to the identification of cyclic peptoid inhibitors of cyclophilin D as neuroprotective agents from mitochondrial dysfunction. Chemical Communications, 2021, 57, 2388-2391.	2.2	5
75	Unlocking the pHâ€Responsive Degradability of Fumaramic Acid Derivatives Using Photoisomerization. Chemistry - A European Journal, 2014, 20, 15715-15718.	1.7	4
76	Control of osmotic pressure through CO ₂ -capture and release facilitated by the lower critical solution temperature (LCST) phase transition of acylated branched polyethylenimine. RSC Advances, 2016, 6, 26526-26530.	1.7	4
77	In Vitro and In Vivo Antimicrobial Activity of Antibioticâ€Conjugated Carriers with Rapid pHâ€Responsive Release Kinetics. Advanced Healthcare Materials, 2019, 8, e1900247.	3.9	4
78	Formation of polyion complex micelles with tunable isoelectric points based on zwitterionic block copolymers. Macromolecular Research, 2012, 20, 1249-1256.	1.0	3
79	Helicity Control of Polymeric Backbones with Alternating cis ―trans Double Bonds in Cyclopolymerized Dipropargyl Amides. Angewandte Chemie - International Edition, 2020, 59, 22968-22972.	7.2	3
80	Dimeric α-Helical Cell Penetrating Peptide Mounted with HER2-Selective Affibody. Biomaterials Science, 2021, 9, 7826-7831.	2.6	3
81	Expansion Microscopy with a Thermally Adjustable Expansion Factor Using Thermoresponsive Biospecimen–Hydrogel Hybrids. ACS Applied Materials & Interfaces, 2021, 13, 28962-28974.	4.0	3
82	Dynamics and Entropy of Cyclohexane Rings Control pH-Responsive Reactivity. Jacs Au, 2021, 1, 2070-2079.	3.6	3
83	Helicity Control of Polymeric Backbones with Alternating cis ―trans Double Bonds in Cyclopolymerized Dipropargyl Amides. Angewandte Chemie, 2020, 132, 23168-23172.	1.6	2
84	Synthesis, Characterization and Application of Dendritic Lipids for Gene Delivery. Bulletin of the Korean Chemical Society, 2012, 33, 1353-1356.	1.0	2
85	Alleviation of Surgery-Induced Osteitis in Sinonasal Cavity by Dexamethasone-Loaded Poly(lactic-co-glycolic acid) (PLGA) Microparticles with Strong Calcium-Binding Affinity. Pharmaceutics, 2022, 14, 546.	2.0	2
86	Amine-selective affinity resins based on pH-sensitive reversible formation of covalent bonds. Soft Matter, 2017, 13, 2295-2298.	1.2	1
87	Antibiotic Delivery: In Vitro and In Vivo Antimicrobial Activity of Antibiotic onjugated Carriers with Rapid pHâ€Responsive Release Kinetics (Adv. Healthcare Mater. 14/2019). Advanced Healthcare Materials, 2019, 8, 1970058.	3.9	1
88	Reversible Protein Conjugation on Live Cell Surfaces by Specific Recognition between Coiled-Coil Motifs of Natural Amino Acid Sequences. Biomacromolecules, 2020, 21, 3539-3546.	2.6	1
89	Nucleophilic Substitution at the Guanidine Carbon Center via Guanidine Cyclic Diimide Activation. Organic Letters, 2021, 23, 9163-9167.	2.4	1
90	<i>De novo</i> generation of a bright blue fluorophore from 2-oxoglutarate in biological samples. Chemical Science, 2022, 13, 365-372.	3.7	1

#	Article	IF	CITATIONS
91	Structure-based inhibitor design for reshaping bacterial morphology. Communications Biology, 2022, 5, 395.	2.0	1
92	Drug Delivery: Electrodeless Reverse Electrodialysis Patches as an Ionic Power Source for Active Transdermal Drug Delivery (Adv. Funct. Mater. 15/2018). Advanced Functional Materials, 2018, 28, 1870100.	7.8	0
93	Frontispiece: Chemoselective Tyrosine Bioconjugation through Sulfate Click Reaction. Chemistry - A European Journal, 2018, 24, .	1.7	0
94	Ring Opening Metathesis Polymerization of Bicyclic α,βâ€Unsaturated Anhydrides for Readyâ€ŧoâ€beâ€grafted Polymers Having Tailored pHâ€Responsive Degradability. Angewandte Chemie, 2018, 130, 12648-12652.	1.6	0
95	Stimulation of Phospholipase D in HepG2 Cells After Transfection Using Cationic Liposomes. Bulletin of the Korean Chemical Society, 2013, 34, 931-935.	1.0	0