Erkki Ruoslahti

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8376312/erkki-ruoslahti-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

71	10,104	43	77
papers	citations	h-index	g-index
77	11,319	13.6	6.38
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
71	iRGD-liposomes enhance tumor delivery and therapeutic efficacy of antisense oligonucleotide drugs against primary prostate cancer and bone metastasis. <i>Advanced Functional Materials</i> , 2021 , 31, 2100478	15.6	5
70	Silver Nanocarriers Targeted with a CendR Peptide Potentiate the Cytotoxic Activity of an Anticancer Drug. <i>Advanced Therapeutics</i> , 2021 , 4, 2000097	4.9	4
69	Systemic brain tumor delivery of synthetic protein nanoparticles for glioblastoma therapy. <i>Nature Communications</i> , 2020 , 11, 5687	17.4	36
68	Tumor-Targeting, MicroRNA-Silencing Porous Silicon Nanoparticles for Ovarian Cancer Therapy. <i>ACS Applied Materials & District Material</i>	9.5	35
67	Tumor-specific macrophage targeting through recognition of retinoid X receptor beta. <i>Journal of Controlled Release</i> , 2019 , 301, 42-53	11.7	20
66	Generation of a multi-functional, target organ-specific, anti-fibrotic molecule by molecular engineering of the extracellular matrix protein, decorin. <i>British Journal of Pharmacology</i> , 2019 , 176, 16-	2 <mark>8</mark> .6	22
65	Peptide-guided nanoparticles for glioblastoma targeting. <i>Journal of Controlled Release</i> , 2019 , 308, 109-	111-18-7	40
64	Securing the Payload, Finding the Cell, and Avoiding the Endosome: Peptide-Targeted, Fusogenic Porous Silicon Nanoparticles for Delivery of siRNA. <i>Advanced Materials</i> , 2019 , 31, e1902952	24	40
63	iRGD in combination with IL-2 reprograms tumor immunosuppression <i>Journal of Clinical Oncology</i> , 2019 , 37, 55-55	2.2	1
62	Immune-mediated ECM depletion improves tumour perfusion and payload delivery. <i>EMBO Molecular Medicine</i> , 2019 , 11, e10923	12	13
61	Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. <i>Nature Biomedical Engineering</i> , 2018 , 2, 95-103	19	177
60	Tracking the Fate of Porous Silicon Nanoparticles Delivering a Peptide Payload by Intrinsic Photoluminescence Lifetime. <i>Advanced Materials</i> , 2018 , 30, e1802878	24	23
59	Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus. <i>Nature Communications</i> , 2018 , 9, 1969	17.4	77
58	Tumor penetrating peptides for improved drug delivery. <i>Advanced Drug Delivery Reviews</i> , 2017 , 110-111, 3-12	18.5	240
57	Tumor-Penetrating Nanosystem Strongly Suppresses Breast Tumor Growth. <i>Nano Letters</i> , 2017 , 17, 135	6-11.3-64	162
56	Targeting of p32 in peritoneal carcinomatosis with intraperitoneal linTT1 peptide-guided pro-apoptotic nanoparticles. <i>Journal of Controlled Release</i> , 2017 , 260, 142-153	11.7	40
55	Vascular changes in tumors resistant to a vascular disrupting nanoparticle treatment. <i>Journal of Controlled Release</i> , 2017 , 268, 49-56	11.7	4

(2016-2017)

54	Selective Targeting of a Novel Vasodilator to the Uterine Vasculature to Treat Impaired Uteroplacental Perfusion in Pregnancy. <i>Theranostics</i> , 2017 , 7, 3715-3731	12.1	54	
53	Silicon Nanoparticles: Porous Silicon Nanoparticle Delivery of Tandem Peptide Anti-Infectives for the Treatment of Pseudomonas aeruginosa Lung Infections (Adv. Mater. 35/2017). <i>Advanced Materials</i> , 2017 , 29,	24	1	
52	In vivo cation exchange in quantum dots for tumor-specific imaging. <i>Nature Communications</i> , 2017 , 8, 343	17.4	40	
51	Porous Silicon Nanoparticle Delivery of Tandem Peptide Anti-Infectives for the Treatment of Pseudomonas aeruginosa Lung Infections. <i>Advanced Materials</i> , 2017 , 29, 1701527	24	62	
50	Precision Targeting of Tumor Macrophages with a CD206 Binding Peptide. <i>Scientific Reports</i> , 2017 , 7, 14655	4.9	92	
49	Identification of a peptide recognizing cerebrovascular changes in mouse models of Alzheimer disease. <i>Nature Communications</i> , 2017 , 8, 1403	17.4	31	
48	Tumor-homing peptides as tools for targeted delivery of payloads to the placenta. <i>Science Advances</i> , 2016 , 2, e1600349	14.3	80	
47	iRGD peptide conjugation potentiates intraperitoneal tumor delivery of paclitaxel with polymersomes. <i>Biomaterials</i> , 2016 , 104, 247-57	15.6	96	
46	Self-Sealing Porous Silicon-Calcium Silicate Core-Shell Nanoparticles for Targeted siRNA Delivery to the Injured Brain. <i>Advanced Materials</i> , 2016 , 28, 7962-7969	24	99	
45	A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. <i>Nature Communications</i> , 2016 , 7, 11980	17.4	97	
44	Composite Porous Silicon-Silver Nanoparticles as Theranostic Antibacterial Agents. <i>ACS Applied Materials & Acs Applied & </i>	9.5	53	
43	Delivery and Targeting of Therapeutic Cells 2016 , 387-396			
42	New p32/gC1qR Ligands for Targeted Tumor Drug Delivery. <i>ChemBioChem</i> , 2016 , 17, 570-5	3.8	56	
41	Targeted silver nanoparticles for ratiometric cell phenotyping. <i>Nanoscale</i> , 2016 , 8, 9096-101	7.7	25	
40	Synthesis of linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2016 , 26, 1618-1623	2.9	23	
39	Paclitaxel-Loaded Polymersomes for Enhanced Intraperitoneal Chemotherapy. <i>Molecular Cancer Therapeutics</i> , 2016 , 15, 670-9	6.1	58	
38	Urokinase-controlled tumor penetrating peptide. <i>Journal of Controlled Release</i> , 2016 , 232, 188-95	11.7	36	
37	Plaque-penetrating peptide inhibits development of hypoxic atherosclerotic plaque. <i>Journal of Controlled Release</i> , 2016 , 238, 212-220	11.7	16	

36	A tumor-penetrating peptide enhances circulation-independent targeting of peritoneal carcinomatosis. <i>Journal of Controlled Release</i> , 2015 , 212, 59-69	11.7	56
35	Nanoparticles coated with the tumor-penetrating peptide iRGD reduce experimental breast cancer metastasis in the brain. <i>Journal of Molecular Medicine</i> , 2015 , 93, 991-1001	5.5	55
34	Selection strategies for anticancer antibody discovery: searching off the beaten path. <i>Trends in Biotechnology</i> , 2015 , 33, 292-301	15.1	24
33	Neuropilin-1 and heparan sulfate proteoglycans cooperate in cellular uptake of nanoparticles functionalized by cationic cell-penetrating peptides. <i>Science Advances</i> , 2015 , 1, e1500821	14.3	50
32	Tumor-penetrating iRGD peptide inhibits metastasis. <i>Molecular Cancer Therapeutics</i> , 2015 , 14, 120-8	6.1	77
31	Increasing Tumor Accessibility with Conjugatable Disulfide-Bridged Tumor-Penetrating Peptides for Cancer Diagnosis and Treatment. <i>Breast Cancer: Basic and Clinical Research</i> , 2015 , 9, 79-87	2.2	3
30	Gated Luminescence Imaging of Silicon Nanoparticles. ACS Nano, 2015, 9, 6233-41	16.7	97
29	Quantity and accessibility for specific targeting of receptors in tumours. <i>Scientific Reports</i> , 2014 , 4, 5237	24.9	29
28	A free cysteine prolongs the half-life of a homing peptide and improves its tumor-penetrating activity. <i>Journal of Controlled Release</i> , 2014 , 175, 48-53	11.7	48
27	Clot-targeted micellar formulation improves anticoagulation efficacy of bivalirudin. <i>ACS Nano</i> , 2014 , 8, 10139-49	16.7	13
26	An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability. <i>Nature Communications</i> , 2014 , 5, 4904	17.4	114
25	A novel vascular homing peptide strategy to selectively enhance pulmonary drug efficacy in pulmonary arterial hypertension. <i>American Journal of Pathology</i> , 2014 , 184, 369-75	5.8	38
24	Etchable plasmonic nanoparticle probes to image and quantify cellular internalization. <i>Nature Materials</i> , 2014 , 13, 904-11	27	131
23	Reprogramming human retinal pigmented epithelial cells to neurons using recombinant proteins. <i>Stem Cells Translational Medicine</i> , 2014 , 3, 1526-34	6.9	26
22	DEPLETION OF TUMOR-ASSOCIATED MACROPHAGES WITH CLODRONATE-LOADED PLGA NANOPARTICLES. <i>Nano LIFE</i> , 2013 , 03, 1343005	0.9	1
21	Proapoptotic peptide-mediated cancer therapy targeted to cell surface p32. <i>Molecular Therapy</i> , 2013 , 21, 2195-204	11.7	57
20	Targeted Antiscarring Therapy for Tissue Injuries. Advances in Wound Care, 2013, 2, 50-54	4.8	31
19	Peptides as targeting elements and tissue penetration devices for nanoparticles. <i>Advanced Materials</i> , 2012 , 24, 3747-56	24	311

18	Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 17450-5	11.5	273
17	Nanoparticle-induced vascular blockade in human prostate cancer. <i>Blood</i> , 2010 , 116, 2847-56	2.2	130
16	Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. <i>Science</i> , 2010 , 328, 1031-5	33.3	796
15	Targeting of drugs and nanoparticles to tumors. <i>Journal of Cell Biology</i> , 2010 , 188, 759-68	7.3	688
14	Drug delivery: Magnetic Luminescent Porous Silicon Microparticles for Localized Delivery of Molecular Drug Payloads (Small 22/2010). <i>Small</i> , 2010 , 6, 2545-2545	11	
13	C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16157-62	11.5	541
12	Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell, 2009, 16, 510-20	24.3	820
11	Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small, 2009, 5, 694	-700	238
10	Targeting of albumin-embedded paclitaxel nanoparticles to tumors. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2009 , 5, 73-82	6	186
9	Mitochondrial/cell-surface protein p32/gC1qR as a molecular target in tumor cells and tumor stroma. <i>Cancer Research</i> , 2008 , 68, 7210-8	10.1	257
8	Magnetic Iron Oxide Nanoworms for Tumor Targeting and Imaging. Advanced Materials, 2008, 20, 1630-	126435	471
7	Biomimetic amplification of nanoparticle homing to tumors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 932-6	11.5	385
6	Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 9381-6	11.5	222
5	Stage-specific vascular markers revealed by phage display in a mouse model of pancreatic islet tumorigenesis. <i>Cancer Cell</i> , 2003 , 4, 393-403	24.3	208
4	A tumor-homing peptide with a targeting specificity related to lymphatic vessels. <i>Nature Medicine</i> , 2002 , 8, 751-5	50.5	398
3	Targeting the prostate for destruction through a vascular address. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 1527-31	11.5	255
2	Anti-cancer activity of targeted pro-apoptotic peptides. <i>Nature Medicine</i> , 1999 , 5, 1032-8	50.5	752
1	Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display. <i>Biochemistry</i> , 1999 , 38, 12499-504	3.2	247