Erkki Ruoslahti

List of Publications by Citations

Source: https://exaly.com/author-pdf/8376312/erkki-ruoslahti-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

71	10,104	43	77
papers	citations	h-index	g-index
77	11,319 ext. citations	13.6	6.38
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
71	Tissue-penetrating delivery of compounds and nanoparticles into tumors. <i>Cancer Cell</i> , 2009 , 16, 510-20	24.3	820
70	Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. <i>Science</i> , 2010 , 328, 1031-5	33.3	796
69	Anti-cancer activity of targeted pro-apoptotic peptides. <i>Nature Medicine</i> , 1999 , 5, 1032-8	50.5	752
68	Targeting of drugs and nanoparticles to tumors. <i>Journal of Cell Biology</i> , 2010 , 188, 759-68	7.3	688
67	C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16157-62	11.5	541
66	Magnetic Iron Oxide Nanoworms for Tumor Targeting and Imaging. <i>Advanced Materials</i> , 2008 , 20, 1630-	-126 ₁ 35	471
65	A tumor-homing peptide with a targeting specificity related to lymphatic vessels. <i>Nature Medicine</i> , 2002 , 8, 751-5	50.5	398
64	Biomimetic amplification of nanoparticle homing to tumors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 932-6	11.5	385
63	Peptides as targeting elements and tissue penetration devices for nanoparticles. <i>Advanced Materials</i> , 2012 , 24, 3747-56	24	311
62	Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 17450-5	11.5	273
61	Mitochondrial/cell-surface protein p32/gC1qR as a molecular target in tumor cells and tumor stroma. <i>Cancer Research</i> , 2008 , 68, 7210-8	10.1	257
60	Targeting the prostate for destruction through a vascular address. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 1527-31	11.5	255
59	Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display. <i>Biochemistry</i> , 1999 , 38, 12499-504	3.2	247
58	Tumor penetrating peptides for improved drug delivery. <i>Advanced Drug Delivery Reviews</i> , 2017 , 110-111, 3-12	18.5	240
57	Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. <i>Small</i> , 2009 , 5, 694	-700	238
56	Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 9381-6	11.5	222
55	Stage-specific vascular markers revealed by phage display in a mouse model of pancreatic islet tumorigenesis. <i>Cancer Cell</i> , 2003 , 4, 393-403	24.3	208

(2015-2009)

54	Targeting of albumin-embedded paclitaxel nanoparticles to tumors. <i>Nanomedicine:</i> Nanotechnology, Biology, and Medicine, 2009 , 5, 73-82	6	186
53	Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nature Biomedical Engineering, 2018 , 2, 95-103	19	177
52	Etchable plasmonic nanoparticle probes to image and quantify cellular internalization. <i>Nature Materials</i> , 2014 , 13, 904-11	27	131
51	Nanoparticle-induced vascular blockade in human prostate cancer. <i>Blood</i> , 2010 , 116, 2847-56	2.2	130
50	An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability. <i>Nature Communications</i> , 2014 , 5, 4904	17.4	114
49	Self-Sealing Porous Silicon-Calcium Silicate Core-Shell Nanoparticles for Targeted siRNA Delivery to the Injured Brain. <i>Advanced Materials</i> , 2016 , 28, 7962-7969	24	99
48	A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. <i>Nature Communications</i> , 2016 , 7, 11980	17.4	97
47	Gated Luminescence Imaging of Silicon Nanoparticles. ACS Nano, 2015, 9, 6233-41	16.7	97
46	iRGD peptide conjugation potentiates intraperitoneal tumor delivery of paclitaxel with polymersomes. <i>Biomaterials</i> , 2016 , 104, 247-57	15.6	96
45	Precision Targeting of Tumor Macrophages with a CD206 Binding Peptide. <i>Scientific Reports</i> , 2017 , 7, 14655	4.9	92
44	Tumor-homing peptides as tools for targeted delivery of payloads to the placenta. <i>Science Advances</i> , 2016 , 2, e1600349	14.3	80
43	Tumor-penetrating iRGD peptide inhibits metastasis. <i>Molecular Cancer Therapeutics</i> , 2015 , 14, 120-8	6.1	77
42	Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus. <i>Nature Communications</i> , 2018 , 9, 1969	17.4	77
41	Tumor-Penetrating Nanosystem Strongly Suppresses Breast Tumor Growth. <i>Nano Letters</i> , 2017 , 17, 13	5 <u>6-1</u> .36	462
40	Porous Silicon Nanoparticle Delivery of Tandem Peptide Anti-Infectives for the Treatment of Pseudomonas aeruginosa Lung Infections. <i>Advanced Materials</i> , 2017 , 29, 1701527	24	62
39	Paclitaxel-Loaded Polymersomes for Enhanced Intraperitoneal Chemotherapy. <i>Molecular Cancer Therapeutics</i> , 2016 , 15, 670-9	6.1	58
38	Proapoptotic peptide-mediated cancer therapy targeted to cell surface p32. <i>Molecular Therapy</i> , 2013 , 21, 2195-204	11.7	57
37	A tumor-penetrating peptide enhances circulation-independent targeting of peritoneal carcinomatosis. <i>Journal of Controlled Release</i> , 2015 , 212, 59-69	11.7	56

36	New p32/gC1qR Ligands for Targeted Tumor Drug Delivery. <i>ChemBioChem</i> , 2016 , 17, 570-5	3.8	56
35	Nanoparticles coated with the tumor-penetrating peptide iRGD reduce experimental breast cancer metastasis in the brain. <i>Journal of Molecular Medicine</i> , 2015 , 93, 991-1001	5.5	55
34	Selective Targeting of a Novel Vasodilator to the Uterine Vasculature to Treat Impaired Uteroplacental Perfusion in Pregnancy. <i>Theranostics</i> , 2017 , 7, 3715-3731	12.1	54
33	Composite Porous Silicon-Silver Nanoparticles as Theranostic Antibacterial Agents. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 30449-30457	9.5	53
32	Neuropilin-1 and heparan sulfate proteoglycans cooperate in cellular uptake of nanoparticles functionalized by cationic cell-penetrating peptides. <i>Science Advances</i> , 2015 , 1, e1500821	14.3	50
31	A free cysteine prolongs the half-life of a homing peptide and improves its tumor-penetrating activity. <i>Journal of Controlled Release</i> , 2014 , 175, 48-53	11.7	48
30	Targeting of p32 in peritoneal carcinomatosis with intraperitoneal linTT1 peptide-guided pro-apoptotic nanoparticles. <i>Journal of Controlled Release</i> , 2017 , 260, 142-153	11.7	40
29	Peptide-guided nanoparticles for glioblastoma targeting. <i>Journal of Controlled Release</i> , 2019 , 308, 109-	118 7	40
28	Securing the Payload, Finding the Cell, and Avoiding the Endosome: Peptide-Targeted, Fusogenic Porous Silicon Nanoparticles for Delivery of siRNA. <i>Advanced Materials</i> , 2019 , 31, e1902952	24	40
27	In vivo cation exchange in quantum dots for tumor-specific imaging. <i>Nature Communications</i> , 2017 , 8, 343	17.4	40
26	A novel vascular homing peptide strategy to selectively enhance pulmonary drug efficacy in pulmonary arterial hypertension. <i>American Journal of Pathology</i> , 2014 , 184, 369-75	5.8	38
25	Systemic brain tumor delivery of synthetic protein nanoparticles for glioblastoma therapy. <i>Nature Communications</i> , 2020 , 11, 5687	17.4	36
24	Urokinase-controlled tumor penetrating peptide. <i>Journal of Controlled Release</i> , 2016 , 232, 188-95	11.7	36
23	Tumor-Targeting, MicroRNA-Silencing Porous Silicon Nanoparticles for Ovarian Cancer Therapy. <i>ACS Applied Materials & Discrete Section</i> , 11, 23926-23937	9.5	35
22	Identification of a peptide recognizing cerebrovascular changes in mouse models of Alzheimer disease. <i>Nature Communications</i> , 2017 , 8, 1403	17.4	31
21	Targeted Antiscarring Therapy for Tissue Injuries. <i>Advances in Wound Care</i> , 2013 , 2, 50-54	4.8	31
20	Quantity and accessibility for specific targeting of receptors in tumours. Scientific Reports, 2014, 4, 523.	24.9	29
19	Reprogramming human retinal pigmented epithelial cells to neurons using recombinant proteins. Stem Cells Translational Medicine, 2014 , 3, 1526-34	6.9	26

(2010-2016)

18	Targeted silver nanoparticles for ratiometric cell phenotyping. <i>Nanoscale</i> , 2016 , 8, 9096-101	7.7	25
17	Selection strategies for anticancer antibody discovery: searching off the beaten path. <i>Trends in Biotechnology</i> , 2015 , 33, 292-301	15.1	24
16	Synthesis of linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2016 , 26, 1618-1623	2.9	23
15	Tracking the Fate of Porous Silicon Nanoparticles Delivering a Peptide Payload by Intrinsic Photoluminescence Lifetime. <i>Advanced Materials</i> , 2018 , 30, e1802878	24	23
14	Generation of a multi-functional, target organ-specific, anti-fibrotic molecule by molecular engineering of the extracellular matrix protein, decorin. <i>British Journal of Pharmacology</i> , 2019 , 176, 16-	·2 ⁸ .6	22
13	Tumor-specific macrophage targeting through recognition of retinoid X receptor beta. <i>Journal of Controlled Release</i> , 2019 , 301, 42-53	11.7	20
12	Plaque-penetrating peptide inhibits development of hypoxic atherosclerotic plaque. <i>Journal of Controlled Release</i> , 2016 , 238, 212-220	11.7	16
11	Clot-targeted micellar formulation improves anticoagulation efficacy of bivalirudin. <i>ACS Nano</i> , 2014 , 8, 10139-49	16.7	13
10	Immune-mediated ECM depletion improves tumour perfusion and payload delivery. <i>EMBO Molecular Medicine</i> , 2019 , 11, e10923	12	13
9	iRGD-liposomes enhance tumor delivery and therapeutic efficacy of antisense oligonucleotide drugs against primary prostate cancer and bone metastasis. <i>Advanced Functional Materials</i> , 2021 , 31, 2100478	15.6	5
8	Vascular changes in tumors resistant to a vascular disrupting nanoparticle treatment. <i>Journal of Controlled Release</i> , 2017 , 268, 49-56	11.7	4
7	Silver Nanocarriers Targeted with a CendR Peptide Potentiate the Cytotoxic Activity of an Anticancer Drug. <i>Advanced Therapeutics</i> , 2021 , 4, 2000097	4.9	4
6	Increasing Tumor Accessibility with Conjugatable Disulfide-Bridged Tumor-Penetrating Peptides for Cancer Diagnosis and Treatment. <i>Breast Cancer: Basic and Clinical Research</i> , 2015 , 9, 79-87	2.2	3
5	Silicon Nanoparticles: Porous Silicon Nanoparticle Delivery of Tandem Peptide Anti-Infectives for the Treatment of Pseudomonas aeruginosa Lung Infections (Adv. Mater. 35/2017). <i>Advanced Materials</i> , 2017 , 29,	24	1
4	DEPLETION OF TUMOR-ASSOCIATED MACROPHAGES WITH CLODRONATE-LOADED PLGA NANOPARTICLES. <i>Nano LIFE</i> , 2013 , 03, 1343005	0.9	1
3	iRGD in combination with IL-2 reprograms tumor immunosuppression <i>Journal of Clinical Oncology</i> , 2019 , 37, 55-55	2.2	1
2	Delivery and Targeting of Therapeutic Cells 2016 , 387-396		
1	Drug delivery: Magnetic Luminescent Porous Silicon Microparticles for Localized Delivery of Molecular Drug Payloads (Small 22/2010). <i>Small</i> , 2010 , 6, 2545-2545	11	