Erkki Ruoslahti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8376312/publications.pdf

Version: 2024-02-01

72 papers

12,380 citations

41323 49 h-index 79644 73 g-index

77 all docs

77 docs citations

times ranked

77

13887 citing authors

#	Article	IF	CITATIONS
1	Tissue-Penetrating Delivery of Compounds and Nanoparticles into Tumors. Cancer Cell, 2009, 16, 510-520.	7.7	967
2	Coadministration of a Tumor-Penetrating Peptide Enhances the Efficacy of Cancer Drugs. Science, 2010, 328, 1031-1035.	6.0	926
3	Anti-cancer activity of targeted pro-apoptotic peptides. Nature Medicine, 1999, 5, 1032-1038.	15.2	866
4	Targeting of drugs and nanoparticles to tumors. Journal of Cell Biology, 2010, 188, 759-768.	2.3	770
5	C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16157-16162.	3.3	674
6	Magnetic Iron Oxide Nanoworms for Tumor Targeting and Imaging. Advanced Materials, 2008, 20, 1630-1635.	11.1	516
7	A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nature Medicine, 2002, 8, 751-755.	15.2	447
8	Biomimetic amplification of nanoparticle homing to tumors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 932-936.	3.3	434
9	Peptides as Targeting Elements and Tissue Penetration Devices for Nanoparticles. Advanced Materials, 2012, 24, 3747-3756.	11.1	353
10	Tumor penetrating peptides for improved drug delivery. Advanced Drug Delivery Reviews, 2017, 110-111, 3-12.	6.6	322
11	Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17450-17455.	3.3	320
12	Mitochondrial/Cell-Surface Protein p32/gC1qR as a Molecular Target in Tumor Cells and Tumor Stroma. Cancer Research, 2008, 68, 7210-7218.	0.4	308
13	Targeting the prostate for destruction through a vascular address. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1527-1531.	3.3	282
14	Isolation of High-Affinity Peptide Antagonists of 14-3-3 Proteins by Phage Displayâ€. Biochemistry, 1999, 38, 12499-12504.	1.2	279
15	Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nature Biomedical Engineering, 2018, 2, 95-103.	11.6	278
16	Systematic Surface Engineering of Magnetic Nanoworms for In vivo Tumor Targeting. Small, 2009, 5, 694-700.	5.2	263
17	Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9381-9386.	3.3	259
18	Stage-specific vascular markers revealed by phage display in a mouse model of pancreatic islet tumorigenesis. Cancer Cell, 2003, 4, 393-403.	7.7	232

#	Article	IF	Citations
19	Targeting of albumin-embedded paclitaxel nanoparticles to tumors. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5, 73-82.	1.7	202
20	New Insights into "Permeability―as in the Enhanced Permeability and Retention Effect of Cancer Nanotherapeutics. ACS Nano, 2017, 11, 9567-9569.	7.3	199
21	An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability. Nature Communications, 2014, 5, 4904.	5.8	156
22	Etchable plasmonic nanoparticle probes to image and quantify cellular internalization. Nature Materials, 2014, 13, 904-911.	13.3	156
23	Nanoparticle-induced vascular blockade in human prostate cancer. Blood, 2010, 116, 2847-2856.	0.6	149
24	Systemic brain tumor delivery of synthetic protein nanoparticles for glioblastoma therapy. Nature Communications, 2020, 11, 5687.	5.8	142
25	A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nature Communications, 2016, 7, 11980.	5.8	138
26	Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus. Nature Communications, 2018, 9, 1969.	5.8	132
27	Precision Targeting of Tumor Macrophages with a CD206 Binding Peptide. Scientific Reports, 2017, 7, 14655.	1.6	125
28	iRGD peptide conjugation potentiates intraperitoneal tumor delivery of paclitaxel with polymersomes. Biomaterials, 2016, 104, 247-257.	5.7	123
29	Selfâ€Sealing Porous Siliconâ€Calcium Silicate Core–Shell Nanoparticles for Targeted siRNA Delivery to the Injured Brain. Advanced Materials, 2016, 28, 7962-7969.	11.1	123
30	Tumor-homing peptides as tools for targeted delivery of payloads to the placenta. Science Advances, 2016, 2, e1600349.	4.7	119
31	Gated Luminescence Imaging of Silicon Nanoparticles. ACS Nano, 2015, 9, 6233-6241.	7.3	114
32	Tumor-Penetrating iRGD Peptide Inhibits Metastasis. Molecular Cancer Therapeutics, 2015, 14, 120-128.	1.9	99
33	Porous Silicon Nanoparticle Delivery of Tandem Peptide Antiâ€Infectives for the Treatment of <i>Pseudomonas aeruginosa</i> Lung Infections. Advanced Materials, 2017, 29, 1701527.	11.1	82
34	Tumor-Penetrating Nanosystem Strongly Suppresses Breast Tumor Growth. Nano Letters, 2017, 17, 1356-1364.	4.5	79
35	Selective Targeting of a Novel Vasodilator to the Uterine Vasculature to Treat Impaired Uteroplacental Perfusion in Pregnancy. Theranostics, 2017, 7, 3715-3731.	4.6	76
36	New p32/gC1qR Ligands for Targeted Tumor Drug Delivery. ChemBioChem, 2016, 17, 570-575.	1.3	75

3

#	Article	IF	CITATIONS
37	Proapoptotic Peptide-Mediated Cancer Therapy Targeted to Cell Surface p32. Molecular Therapy, 2013, 21, 2195-2204.	3.7	74
38	Nanoparticles coated with the tumor-penetrating peptide iRGD reduce experimental breast cancer metastasis in the brain. Journal of Molecular Medicine, 2015, 93, 991-1001.	1.7	73
39	Securing the Payload, Finding the Cell, and Avoiding the Endosome: Peptideâ€Targeted, Fusogenic Porous Silicon Nanoparticles for Delivery of siRNA. Advanced Materials, 2019, 31, e1902952.	11.1	73
40	Composite Porous Silicon–Silver Nanoparticles as Theranostic Antibacterial Agents. ACS Applied Materials & Discrete Representation (2016), 8, 30449-30457.	4.0	70
41	Neuropilin-1 and heparan sulfate proteoglycans cooperate in cellular uptake of nanoparticles functionalized by cationic cell-penetrating peptides. Science Advances, 2015, 1, e1500821.	4.7	68
42	Paclitaxel-Loaded Polymersomes for Enhanced Intraperitoneal Chemotherapy. Molecular Cancer Therapeutics, 2016, 15, 670-679.	1.9	68
43	A tumor-penetrating peptide enhances circulation-independent targeting of peritoneal carcinomatosis. Journal of Controlled Release, 2015, 212, 59-69.	4.8	62
44	Peptide-guided nanoparticles for glioblastoma targeting. Journal of Controlled Release, 2019, 308, 109-118.	4.8	60
45	Tumor-Targeting, MicroRNA-Silencing Porous Silicon Nanoparticles for Ovarian Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23926-23937.	4.0	59
46	Targeting of p32 in peritoneal carcinomatosis with intraperitoneal linTT1 peptide-guided pro-apoptotic nanoparticles. Journal of Controlled Release, 2017, 260, 142-153.	4.8	57
47	A free cysteine prolongs the half-life of a homing peptide and improves its tumor-penetrating activity. Journal of Controlled Release, 2014, 175, 48-53.	4.8	56
48	In vivo cation exchange in quantum dots for tumor-specific imaging. Nature Communications, 2017, 8, 343.	5.8	56
49	Identification of a peptide recognizing cerebrovascular changes in mouse models of Alzheimer's disease. Nature Communications, 2017, 8, 1403.	5.8	54
50	A Novel Vascular Homing Peptide Strategy to Selectively Enhance Pulmonary Drug Efficacy in Pulmonary Arterial Hypertension. American Journal of Pathology, 2014, 184, 369-375.	1.9	46
51	Urokinase-controlled tumor penetrating peptide. Journal of Controlled Release, 2016, 232, 188-195.	4.8	46
52	Generation of a multiâ€functional, target organâ€specific, antiâ€fibrotic molecule by molecular engineering of the extracellular matrix protein, decorin. British Journal of Pharmacology, 2019, 176, 16-25.	2.7	39
53	Tumor-specific macrophage targeting through recognition of retinoid X receptor beta. Journal of Controlled Release, 2019, 301, 42-53.	4.8	36
54	Tracking the Fate of Porous Silicon Nanoparticles Delivering a Peptide Payload by Intrinsic Photoluminescence Lifetime. Advanced Materials, 2018, 30, e1802878.	11.1	35

#	Article	IF	CITATIONS
55	Targeted Antiscarring Therapy for Tissue Injuries. Advances in Wound Care, 2013, 2, 50-54.	2.6	34
56	Quantity and accessibility for specific targeting of receptors in tumours. Scientific Reports, 2014, 4, 5232.	1.6	33
57	Targeted silver nanoparticles for ratiometric cell phenotyping. Nanoscale, 2016, 8, 9096-9101.	2.8	33
58	Synthesis of linear and cyclic peptide–PEG–lipids for stabilization and targeting of cationic liposome–DNA complexes. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1618-1623.	1.0	32
59	iRGDâ€Liposomes Enhance Tumor Delivery and Therapeutic Efficacy of Antisense Oligonucleotide Drugs against Primary Prostate Cancer and Bone Metastasis. Advanced Functional Materials, 2021, 31, 2100478.	7.8	32
60	Reprogramming Human Retinal Pigmented Epithelial Cells to Neurons Using Recombinant Proteins. Stem Cells Translational Medicine, 2014, 3, 1526-1534.	1.6	31
61	Selection strategies for anticancer antibody discovery: searching off the beaten path. Trends in Biotechnology, 2015, 33, 292-301.	4.9	29
62	Immuneâ€mediated ECM depletion improves tumour perfusion and payload delivery. EMBO Molecular Medicine, 2019, 11, e10923.	3.3	23
63	Plaque-penetrating peptide inhibits development of hypoxic atherosclerotic plaque. Journal of Controlled Release, 2016, 238, 212-220.	4.8	19
64	Clot-Targeted Micellar Formulation Improves Anticoagulation Efficacy of Bivalirudin. ACS Nano, 2014, 8, 10139-10149.	7.3	14
65	Silver Nanocarriers Targeted with a CendR Peptide Potentiate the Cytotoxic Activity of an Anticancer Drug. Advanced Therapeutics, 2021, 4, 2000097.	1.6	9
66	Vascular changes in tumors resistant to a vascular disrupting nanoparticle treatment. Journal of Controlled Release, 2017, 268, 49-56.	4.8	7
67	Molecular ZIP codes in targeted drug delivery. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	7
68	Increasing Tumor Accessibility with Conjugatable Disulfide-Bridged Tumor-Penetrating Peptides for Cancer Diagnosis and Treatment. Breast Cancer: Basic and Clinical Research, 2015, 9s2, BCBCR.S29426.	0.6	3
69	Silicon Nanoparticles: Porous Silicon Nanoparticle Delivery of Tandem Peptide Antiâ€Infectives for the Treatment of <i>Pseudomonas aeruginosa</i> Lung Infections (Adv. Mater. 35/2017). Advanced Materials, 2017, 29, .	11.1	2
70	iRGD in combination with IL-2 reprograms tumor immunosuppression Journal of Clinical Oncology, 2019, 37, 55-55.	0.8	2
71	DEPLETION OF TUMOR-ASSOCIATED MACROPHAGES WITH CLODRONATE-LOADED PLGA NANOPARTICLES. Nano LIFE, 2013, 03, 1343005.	0.6	1
72	Drug delivery: Magnetic Luminescent Porous Silicon Microparticles for Localized Delivery of Molecular Drug Payloads (Small 22/2010). Small, 2010, 6, 2545-2545.	5.2	0