
Craig B Wilen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8376102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distinct Roles of Type I and Type III Interferons during a Native Murine Î ² Coronavirus Lung Infection. Journal of Virology, 2022, 96, JVI0124121.	1.5	10
2	A stem-loop RNA RIC-I agonist protects against acute and chronic SARS-CoV-2 infection in mice. Journal of Experimental Medicine, 2022, 219, .	4.2	46
3	Restriction of Viral Replication, Rather than T Cell Immunopathology, Drives Lethality in Murine Norovirus CR6-Infected STAT1-Deficient Mice. Journal of Virology, 2022, 96, jvi0206521.	1.5	1
4	High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells. Science Immunology, 2022, 7, .	5.6	28
5	Tuft cells are key mediators of interkingdom interactions at mucosal barrier surfaces. PLoS Pathogens, 2022, 18, e1010318.	2.1	21
6	Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617. Nature Communications, 2022, 13, 1638.	5.8	11
7	De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: a case report. Nature Communications, 2022, 13, 1547.	5.8	159
8	Reovirus infection is regulated by NPC1 and endosomal cholesterol homeostasis. PLoS Pathogens, 2022, 18, e1010322.	2.1	11
9	A humanized mouse model of chronic COVID-19. Nature Biotechnology, 2022, 40, 906-920.	9.4	71
10	Variant-specific vaccination induces systems immune responses and potent inÂvivo protection against SARS-CoV-2. Cell Reports Medicine, 2022, 3, 100634.	3.3	10
11	Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature, 2022, 606, 585-593.	13.7	276
12	Omicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2. Nature Communications, 2022, 13, .	5.8	40
13	Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection. Cell, 2021, 184, 76-91.e13.	13.5	418
14	Intercellular Mitochondria Transfer to Macrophages Regulates White Adipose Tissue Homeostasis and Is Impaired in Obesity. Cell Metabolism, 2021, 33, 270-282.e8.	7.2	160
15	CD300lf Conditional Knockout Mouse Reveals Strain-Specific Cellular Tropism of Murine Norovirus. Journal of Virology, 2021, 95, .	1.5	17
16	Neuroinvasion of SARS-CoV-2 in human and mouse brain. Journal of Experimental Medicine, 2021, 218, .	4.2	677
17	Comprehensive inÂvivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. Molecular Cell, 2021, 81, 584-598.e5.	4.5	198
18	Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes. PLoS Biology, 2021, 19, e3001143.	2.6	180

CRAIG B WILEN

#	Article	IF	CITATIONS
19	Nonsteroidal Anti-inflammatory Drugs Dampen the Cytokine and Antibody Response to SARS-CoV-2 Infection. Journal of Virology, 2021, 95, .	1.5	97
20	Norovirus evolution in immunodeficient mice reveals potentiated pathogenicity via a single nucleotide change in the viral capsid. PLoS Pathogens, 2021, 17, e1009402.	2.1	11
21	Discovery and functional interrogation of SARS-CoV-2 RNA-host protein interactions. Cell, 2021, 184, 2394-2411.e16.	13.5	141
22	Translational shutdown and evasion of the innate immune response by SARS-CoV-2 NSP14 protein. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	142
23	Restriction of SARS-CoV-2 replication by targeting programmed â~'1 ribosomal frameshifting. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	75
24	Live imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacy. Immunity, 2021, 54, 2143-2158.e15.	6.6	155
25	UFMylation inhibits the proinflammatory capacity of interferon-γ–activated macrophages. Proceedings of the United States of America, 2021, 118, .	3.3	24
26	High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells Science Immunology, 2021, , eabl5652.	5.6	6
27	The intestinal regionalization of acute norovirus infection is regulated by the microbiota via bile acid-mediated priming of type III interferon. Nature Microbiology, 2020, 5, 84-92.	5.9	87
28	The Interpretation of SARS-CoV-2 Diagnostic Tests. Med, 2020, 1, 78-89.	2.2	22
29	Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. Journal of Experimental Medicine, 2020, 217, .	4.2	357
30	Cytidine Monophosphate <i>N</i> -Acetylneuraminic Acid Synthetase and Solute Carrier Family 35 Member A1 Are Required for Reovirus Binding and Infection. Journal of Virology, 2020, 95, .	1.5	11
31	An ACE2 Microbody Containing a Single Immunoglobulin Fc Domain Is a Potent Inhibitor of SARS-CoV-2. Cell Reports, 2020, 33, 108528.	2.9	77
32	Acute encephalopathy with elevated CSF inflammatory markers as the initial presentation of COVID-19. BMC Neurology, 2020, 20, 248.	0.8	108
33	CD300LF Polymorphisms of Inbred Mouse Strains Confer Resistance to Murine Norovirus Infection in a Cell Type-Dependent Manner. Journal of Virology, 2020, 94, .	1.5	3
34	Select autophagy genes maintain quiescence of tissue-resident macrophages and increase susceptibility to Listeria monocytogenes. Nature Microbiology, 2020, 5, 272-281.	5.9	36
35	CD300lf is the primary physiologic receptor of murine norovirus but not human norovirus. PLoS Pathogens, 2020, 16, e1008242.	2.1	44
36	Bile Salts Alter the Mouse Norovirus Capsid Conformation: Possible Implications for Cell Attachment and Immune Evasion. Journal of Virology, 2019, 93, .	1.5	39

CRAIG B WILEN

#	Article	IF	CITATIONS
37	A Secreted Viral Nonstructural Protein Determines Intestinal Norovirus Pathogenesis. Cell Host and Microbe, 2019, 25, 845-857.e5.	5.1	57
38	Mouse Norovirus Infection Arrests Host Cell Translation Uncoupled from the Stress Granule-PKR-eIF21 \pm Axis. MBio, 2019, 10, .	1.8	39
39	Norovirus Attachment and Entry. Viruses, 2019, 11, 495.	1.5	39
40	Noroviruses subvert the core stress granule component G3BP1 to promote viral VPg-dependent translation. ELife, 2019, 8, .	2.8	48
41	Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science, 2018, 360, 204-208.	6.0	187
42	Structural basis for murine norovirus engagement of bile acids and the CD300lf receptor. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9201-E9210.	3.3	82
43	Sphingolipid biosynthesis induces a conformational change in the murine norovirus receptor and facilitates viral infection. Nature Microbiology, 2018, 3, 1109-1114.	5.9	33
44	Interaction between smoking and ATG16L1T300A triggers Paneth cell defects in Crohn's disease. Journal of Clinical Investigation, 2018, 128, 5110-5122.	3.9	53
45	Using direct antiglobulin test results to reduce unnecessary cold agglutinin testing. Transfusion, 2017, 57, 1480-1484.	0.8	9
46	Norovirus Cell Tropism Is Determined by Combinatorial Action of a Viral Non-structural Protein and Host Cytokine. Cell Host and Microbe, 2017, 22, 449-459.e4.	5.1	70
47	Viral Replication Complexes Are Targeted by LC3-Guided Interferon-Inducible GTPases. Cell Host and Microbe, 2017, 22, 74-85.e7.	5.1	90
48	Epidemiology of Bloodstream Infections. , 2017, , 163-181.		2
49	CD4 Receptor is a Key Determinant of Divergent HIV-1 Sensing by Plasmacytoid Dendritic Cells. PLoS Pathogens, 2016, 12, e1005553.	2.1	27
50	Discovery of a proteinaceous cellular receptor for a norovirus. Science, 2016, 353, 933-936.	6.0	241
51	Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology, 2016, 34, 184-191.	9.4	3,168
52	Homeostatic Control of Innate Lung Inflammation by Vici Syndrome Gene Epg5 and Additional Autophagy Genes Promotes Influenza Pathogenesis. Cell Host and Microbe, 2016, 19, 102-113.	5.1	83
53	Altered Virome and Bacterial Microbiome in Human Immunodeficiency Virus-Associated Acquired Immunodeficiency Syndrome. Cell Host and Microbe, 2016, 19, 311-322.	5.1	330
54	Impact on Patient Management and Outcome of Switching between 2 Contemporary Sensitive Cardiac Troponin Assays. Clinical Chemistry, 2015, 61, 870-876.	1.5	2

CRAIG B WILEN

#	Article	IF	CITATIONS
55	Comparison of Sample Preparation Methods, Instrumentation Platforms, and Contemporary Commercial Databases for Identification of Clinically Relevant Mycobacteria by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry. Journal of Clinical Microbiology, 2015, 53, 2308-2315.	1.8	66
56	Criteria for Reducing Unnecessary Testing for Herpes Simplex Virus, Varicella-Zoster Virus, Cytomegalovirus, and Enterovirus in Cerebrospinal Fluid Samples from Adults. Journal of Clinical Microbiology, 2015, 53, 887-895.	1.8	19
57	Markers of Intestinal Inflammation for the Diagnosis of Infectious Gastroenteritis. Clinics in Laboratory Medicine, 2015, 35, 333-344.	0.7	12
58	The Major Cellular Sterol Regulatory Pathway Is Required for Andes Virus Infection. PLoS Pathogens, 2014, 10, e1003911.	2.1	80
59	Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood, 2014, 123, 61-69.	0.6	135
60	Transmitted/Founder and Chronic HIV-1 Envelope Proteins Are Distinguished by Differential Utilization of CCR5. Journal of Virology, 2013, 87, 2401-2411.	1.5	66
61	Phenotypic properties of transmitted founder HIV-1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6626-6633.	3.3	379
62	Transmitted/Founder and Chronic Subtype C HIV-1 Use CD4 and CCR5 Receptors with Equal Efficiency and Are Not Inhibited by Blocking the Integrin α4β7. PLoS Pathogens, 2012, 8, e1002686.	2.1	140
63	HIV: Cell Binding and Entry. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006866-a006866.	2.9	438
64	Molecular Mechanisms of HIV Entry. Advances in Experimental Medicine and Biology, 2012, 726, 223-242.	0.8	177
65	Primary Infection by a Human Immunodeficiency Virus with Atypical Coreceptor Tropism. Journal of Virology, 2011, 85, 10669-10681.	1.5	51
66	Phenotypic and Immunologic Comparison of Clade B Transmitted/Founder and Chronic HIV-1 Envelope Glycoproteins. Journal of Virology, 2011, 85, 8514-8527.	1.5	110
67	Engineering HIV-Resistant Human CD4+ T Cells with CXCR4-Specific Zinc-Finger Nucleases. PLoS Pathogens, 2011, 7, e1002020.	2.1	130
68	Evolution of a Distinct Genomic Domain in Drosophila: Comparative Analysis of the Dot Chromosome in <i>Drosophila melanogaster</i> and <i>Drosophila virilis</i> . Genetics, 2010, 185, 1519-1534.	1.2	34
69	HIV-1 Resistance to CCR5 Antagonists Associated with Highly Efficient Use of CCR5 and Altered Tropism on Primary CD4 ⁺ T Cells. Journal of Virology, 2010, 84, 6505-6514.	1.5	59
70	A Maraviroc-Resistant HIV-1 with Narrow Cross-Resistance to Other CCR5 Antagonists Depends on both N-Terminal and Extracellular Loop Domains of Drug-Bound CCR5. Journal of Virology, 2010, 84, 10863-10876.	1.5	100