Lisa Brancaleoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8375840/publications.pdf

Version: 2024-02-01

687363 713466 23 559 13 21 citations h-index g-index papers 24 24 24 960 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation. Global Change Biology, 2012, 18, 1163-1172.	9.5	113
2	Monitoring temporal trends of air pollution in an urban area using mosses and lichens as biomonitors. Chemosphere, 2014, 108, 388-395.	8.2	71
3	Nitrogen deposition interacts with climate in affecting production and decomposition rates in Sphagnum mosses. Global Change Biology, 2007, 13, 1810-1821.	9.5	70
4	Heatwave 2003: high summer temperature, rather than experimental fertilization, affects vegetation and CO ₂ exchange in an alpine bog. New Phytologist, 2008, 179, 142-154.	7.3	52
5	Differential effects of soil chemistry on the foliar resorption of nitrogen and phosphorus across altitudinal gradients. Functional Ecology, 2019, 33, 1351-1361.	3.6	32
6	Response of dwarf shrubs to neighbour removal and nutrient addition and their influence on community structure in a subalpine heath. Journal of Ecology, 2000, 88, 256-266.	4.0	26
7	Nutrient and carbon relations in subalpine dwarf shrubs after neighbour removal or fertilization in northern Italy. Oecologia, 2002, 130, 476-483.	2.0	26
8	Effects of nitrogen and phosphorus supply on growth and flowering phenology of the snowbed forb Gnaphalium supinum L Flora: Morphology, Distribution, Functional Ecology of Plants, 2014, 209, 271-278.	1.2	25
9	A European map of groundwater pH and calcium. Earth System Science Data, 2021, 13, 1089-1105.	9.9	24
10	Biomass distribution of two subalpine dwarfâ€shrubs in relation to soil moisture and nutrient content. Journal of Vegetation Science, 2004, 15, 457-464.	2.2	19
11	Responses of subalpine dwarfâ€shrub heath to irrigation and fertilization. Journal of Vegetation Science, 2007, 18, 337-344.	2.2	18
12	Mowing regime has different effects on reed stands in relation toÂhabitat. Journal of Environmental Management, 2014, 134, 56-62.	7.8	16
13	Hydrologic controls on water chemistry, vegetation and ecological patterns in two mires in the South-Eastern Alps (Italy). Catena, 2011, 86, 86-97.	5.0	15
14	Wetland Plant Diversity in a Coastal Nature Reserve in Italy: Relationships with Salinization and Eutrophication and Implications for Nature Conservation. Estuaries and Coasts, 2018, 41, 2079-2091.	2.2	13
15	Microbial nitrogen cycling interacts with exogenous nitrogen supply in affecting growth of Sphagnum papillosum. Environmental and Experimental Botany, 2006, 57, 1-8.	4.2	10
16	Nursery preâ€treatment positively affects reintroduced plant performance via plant preâ€conditioning, but not via maternal effects. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 641-650.	2.0	7
17	Habitatâ€dependent interactive effects of a heatwave and experimental fertilization on the vegetation of an alpine mire. Journal of Vegetation Science, 2014, 25, 427-438.	2.2	6
18	Coexistence of rice production and threatened plant species: testing Marsilea quadrifolia L. in N-Italy. Paddy and Water Environment, 2021, 19, 395.	1.8	6

#	Article	IF	CITATIONS
19	Slow Recovery of Mire Vegetation from Environmental Perturbations Caused by a Heat Wave and Experimental Fertilization. Wetlands, 2015, 35, 769-782.	1.5	5
20	Plant Regeneration Above the Species Elevational Leading Edge: Trade-Off Between Seedling Recruitment and Plant Production. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	4
21	Legacy effect of green manure crops fertilized with calcium phosphite on maize production and soil properties. Journal of Environmental Management, 2021, 295, 113092.	7.8	1
22	Flora. Geobotany Studies, 2021, , 23-78.	0.2	0
23	Relative importance of site selection and aftercare for successful reintroduction of the policy species <i>Kosteletzkya pentacarpos</i> . Plant Biosystems, 2023, 157, 80-88.	1.6	0