List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8375679/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Metabolic Engineering, 2014, 23, 34-41.	3.6	98
2	Cloning, Expression, and Characterization of <scp>l</scp> -Asparaginase from a Newly Isolated Bacillus subtilis B11–06. Journal of Agricultural and Food Chemistry, 2013, 61, 9428-9434.	2.4	94
3	Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects. Critical Reviews in Biotechnology, 2017, 37, 990-1005.	5.1	77
4	Systems pathway engineering of Corynebacterium crenatum for improved L-arginine production. Scientific Reports, 2016, 6, 28629.	1.6	52
5	Isolation and identification of an acetoin high production bacterium that can reverse transform 2,3-butanediol to acetoin at the decline phase of fermentation. World Journal of Microbiology and Biotechnology, 2011, 27, 2785-2790.	1.7	49
6	Efficient Whole-Cell Biocatalyst for Acetoin Production with NAD+ Regeneration System through Homologous Co-Expression of 2,3-Butanediol Dehydrogenase and NADH Oxidase in Engineered Bacillus subtilis. PLoS ONE, 2014, 9, e102951.	1.1	48
7	Improvement of the intracellular environment for enhancing l-arginine production of Corynebacterium glutamicum by inactivation of H2O2-forming flavin reductases and optimization of ATP supply. Metabolic Engineering, 2016, 38, 310-321.	3.6	48
8	Enhanced 2,3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens. Microbial Cell Factories, 2015, 14, 122.	1.9	47
9	Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3â€butanediol proportion in <i>Bacillus subtilis</i> . Biotechnology Journal, 2015, 10, 1298-1306.	1.8	45
10	Efficient testosterone production by engineered Pichia pastoris co-expressing human 17Î2-hydroxysteroid dehydrogenase type 3 and Saccharomyces cerevisiae glucose 6-phosphate dehydrogenase with NADPH regeneration. Green Chemistry, 2016, 18, 1774-1784.	4.6	43
11	Bioconversion of 4-androstene-3,17-dione to androst-1,4-diene-3,17-dione by recombinant Bacillus subtilis expressing ksdd gene encoding 3-ketosteroid-Δ1-dehydrogenase from Mycobacterium neoaurum JC-12. Journal of Steroid Biochemistry and Molecular Biology, 2013, 135, 36-42.	1.2	42
12	Heterologous and homologous expression of the arginine biosynthetic <i>arg</i> C~H cluster from <i>Corynebacterium crenatum</i> for improvement of <scp> </scp> -arginine production. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 495-502.	1.4	39
13	Effect of ultrasound-assisted thawing on gelling and 3D printing properties of silver carp surimi. Food Research International, 2021, 145, 110405.	2.9	39
14	Elimination of a Free Cysteine by Creation of a Disulfide Bond Increases the Activity and Stability of Candida boidinii Formate Dehydrogenase. Applied and Environmental Microbiology, 2017, 83, .	1.4	37
15	Amino acid residues adjacent to the catalytic cavity of tetramer l-asparaginase II contribute significantly to its catalytic efficiency and thermostability. Enzyme and Microbial Technology, 2016, 82, 15-22.	1.6	35
16	Enhanced Production of Androst-1,4-Diene-3,17-Dione by Mycobacterium neoaurum JC-12 Using Three-Stage Fermentation Strategy. PLoS ONE, 2015, 10, e0137658.	1.1	35
17	Designing of a Cofactor Self-Sufficient Whole-Cell Biocatalyst System for Production of 1,2-Amino Alcohols from Epoxides. ACS Synthetic Biology, 2019, 8, 734-743.	1.9	34
18	Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatum L-arginine production. Amino Acids, 2012, 43, 255-266.	1.2	33

#	Article	IF	CITATIONS
19	Metabolic engineering of Bacillus subtilis for redistributing the carbon flux to 2,3-butanediol by manipulating NADH levels. Biotechnology for Biofuels, 2015, 8, 129.	6.2	32
20	Efficient one-step preparation of $\hat{1}^3$ -aminobutyric acid from glucose without an exogenous cofactor by the designed Corynebacterium glutamicum. Green Chemistry, 2014, 16, 4190-4197.	4.6	31
21	LysR-Type Transcriptional Regulator MetR Controls Prodigiosin Production, Methionine Biosynthesis, Cell Motility, H ₂ O ₂ Tolerance, Heat Tolerance, and Exopolysaccharide Synthesis in Serratia marcescens. Applied and Environmental Microbiology, 2020, 86, .	1.4	31
22	Metabolic engineering of Bacillus subtilis for enhancing riboflavin production by alleviating dissolved oxygen limitation. Bioresource Technology, 2021, 333, 125228.	4.8	30
23	Significantly enhancing production of <i>trans</i> -4-hydroxy- <scp>l</scp> -proline by integrated system engineering in <i>Escherichia coli</i> . Science Advances, 2020, 6, eaba2383.	4.7	30
24	Two-Stage pH Control Strategy Based on the pH Preference of Acetoin Reductase Regulates Acetoin and 2,3-Butanediol Distribution in Bacillus subtilis. PLoS ONE, 2014, 9, e91187.	1.1	30
25	Rational Engineering of <i>Bacillus cereus</i> Leucine Dehydrogenase Towards α-keto Acid Reduction for Improving Unnatural Amino Acid Production. Biotechnology Journal, 2019, 14, 1800253.	1.8	28
26	Epsilon-poly-L-lysine: Recent Advances in Biomanufacturing and Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 748976.	2.0	28
27	Effect of Polyhydroxybutyrate (PHB) storage on l-arginine production in recombinant Corynebacterium crenatum using coenzyme regulation. Microbial Cell Factories, 2016, 15, 15.	1.9	27
28	Simultaneous cell disruption and semi-quantitative activity assays for high-throughput screening of thermostable L-asparaginases. Scientific Reports, 2018, 8, 7915.	1.6	27
29	Insight into the thermostability of thermophilic L-asparaginase and non-thermophilic L-asparaginase II through bioinformatics and structural analysis. Applied Microbiology and Biotechnology, 2019, 103, 7055-7070.	1.7	26
30	Enhancement of the thermostability of Streptomyces kathirae SC-1 tyrosinase by rational design and empirical mutation. Enzyme and Microbial Technology, 2015, 77, 54-60.	1.6	25
31	Enhancing l-glutamine production in Corynebacterium glutamicum by rational metabolic engineering combined with a two-stage pH control strategy. Bioresource Technology, 2021, 341, 125799.	4.8	25
32	A mutant form of 3-ketosteroid-Δ1-dehydrogenase gives altered androst-1,4-diene-3, 17-dione/androst-4-ene-3,17-dione molar ratios in steroid biotransformations by <i>Mycobacterium neoaurum</i> ST-095. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 691-701.	1.4	23
33	Efficient biosynthesis of l-phenylglycine by an engineered Escherichia coli with a tunable multi-enzyme-coordinate expression system. Applied Microbiology and Biotechnology, 2018, 102, 2129-2141.	1.7	23
34	Regulatory protein SrpA controls phage infection and core cellular processes in Pseudomonas aeruginosa. Nature Communications, 2018, 9, 1846.	5.8	23
35	Directed Evolution of Ornithine Cyclodeaminase Using an EvolvR-Based Growth-Coupling Strategy for Efficient Biosynthesis of <scp>l</scp> -Proline. ACS Synthetic Biology, 2020, 9, 1855-1863.	1.9	23
36	Construction of a novel recombinant Escherichia coli strain capable of producing 1,3–propanediol and optimization of fermentation parameters by statistical design. World Journal of Microbiology and Biotechnology, 2006, 22, 945-952.	1.7	22

#	Article	IF	CITATIONS
37	Enhancement of steroid hydroxylation yield from dehydroepiandrosterone by cyclodextrin complexation technique. Steroids, 2014, 84, 70-77.	0.8	22
38	Cloning and identification of a novel tyrosinase and its overexpression in Streptomyces kathirae SC-1 for enhancing melanin production. FEMS Microbiology Letters, 2015, 362, fnv041.	0.7	22
39	Enhanced riboflavin production by recombinant Bacillus subtilis RF1 through the optimization of agitation speed. World Journal of Microbiology and Biotechnology, 2014, 30, 661-667.	1.7	21
40	Glu56Ser mutation improves the enzymatic activity and catalytic stability of Bacillus subtilis l-aspartate α-decarboxylase for an efficient β-alanine production. Process Biochemistry, 2018, 70, 117-123.	1.8	21
41	Identification of steroid C27 monooxygenase isoenzymes involved in sterol catabolism and stepwise pathway engineering of <i>Mycobacterium neoaurum</i> for improved androst-1,4-diene-3,17-dione production. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 635-647.	1.4	21
42	Improved Prodigiosin Production by Relieving CpxR Temperature-Sensitive Inhibition. Frontiers in Bioengineering and Biotechnology, 2020, 8, 344.	2.0	20
43	Microbial production of riboflavin: Biotechnological advances and perspectives. Metabolic Engineering, 2021, 68, 46-58.	3.6	20
44	Improvement of the ammonia assimilation for enhancing <scp>l</scp> -arginine production of <i>Corynebacterium crenatum</i> . Journal of Industrial Microbiology and Biotechnology, 2017, 44, 443-451.	1.4	19
45	Enhanced extracellular gamma glutamyl transpeptidase production by overexpressing of PrsA lipoproteins and improving its mRNA stability in Bacillus subtilis and application in biosynthesis of L-theanine. Journal of Biotechnology, 2019, 302, 85-91.	1.9	19
46	Surface charge-based rational design of aspartase modifies the optimal pH for efficient β-aminobutyric acid production. International Journal of Biological Macromolecules, 2020, 164, 4165-4172.	3.6	19
47	Comparative investigation on metabolite changes in â€~wu mi' production by Vaccinium bracteatum Thunb. leaves based on multivariate data analysis using UPLC–QToF–MS. Food Chemistry, 2019, 286, 146-153.	4.2	18
48	Loss of Serine-Type D-Ala-D-Ala Carboxypeptidase DacA Enhances Prodigiosin Production in Serratia marcescens. Frontiers in Bioengineering and Biotechnology, 2019, 7, 367.	2.0	18
49	Efficient single whole-cell biotransformation for L-2-aminobutyric acid production through engineering of leucine dehydrogenase combined with expression regulation. Bioresource Technology, 2021, 326, 124665.	4.8	18
50	Improvement of NADPH-dependent P450-mediated biotransformation of 7α,15α-diOH-DHEA from DHEA by a dual cosubstrate-coupled system. Steroids, 2015, 101, 15-20.	0.8	17
51	Cloning and Expression of a Novel Leucine Dehydrogenase: Characterization and L-tert-Leucine Production. Frontiers in Bioengineering and Biotechnology, 2020, 8, 186.	2.0	17
52	Development of cellulose nanofibrils reinforced polyvinyl alcohol films incorporated with alizarin for intelligent food packaging. International Journal of Food Science and Technology, 2021, 56, 4248-4257.	1.3	17
53	The Role of ARGR Repressor Regulation on L-arginine Production in Corynebacterium crenatum. Applied Biochemistry and Biotechnology, 2013, 170, 587-597.	1.4	16
54	The Effect of a LYSE Exporter Overexpression on l-Arginine Production in Corynebacterium crenatum. Current Microbiology, 2013, 67, 271-278.	1.0	16

#	Article	IF	CITATIONS
55	Bioconversion of cholesterol to 4â€cholestenâ€3â€one by recombinant <i>Bacillus subtilis</i> expressing <i><scp>choM</scp></i> gene encoding cholesterol oxidase from <i>Mycobacterium neoaurum</i> <scp>JC</scp> â€12. Journal of Chemical Technology and Biotechnology, 2015, 90, 1811-1820.	1.6	16
56	Reengineering of the feedback-inhibition enzyme N-acetyl-l-glutamate kinase to enhance l-arginine production in Corynebacterium crenatum. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 271-283.	1.4	15
57	PsrA is a novel regulator contributes to antibiotic synthesis, bacterial virulence, cell motility and extracellular polysaccharides production in <i>Serratia marcescens</i> . Nucleic Acids Research, 2022, 50, 127-148.	6.5	15
58	Construction of a highly efficient <i>Bacillus subtilis</i> 168 whole-cell biocatalyst and its application in the production of <scp> </scp> -ornithine. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 1427-1437.	1.4	14
59	Biofunctionalized "Kiwifruitâ€Assembly―of Oxidoreductases in Mesoporous ZnO/Carbon Nanoparticles for Efficient Asymmetric Catalysis. Advanced Materials, 2018, 30, 1705443.	11.1	14
60	Improved <scp>l</scp> -ornithine production in <i>Corynebacterium crenatum</i> by introducing an artificial linear transacetylation pathway. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 393-404.	1.4	14
61	Effects of Geniposide from Gardenia Fruit Pomace on Skeletal-Muscle Fibrosis. Journal of Agricultural and Food Chemistry, 2018, 66, 5802-5811.	2.4	14
62	Asp305Gly mutation improved the activity and stability of the styrene monooxygenase for efficient epoxide production in Pseudomonas putida KT2440. Microbial Cell Factories, 2019, 18, 12.	1.9	14
63	Effect of selected strains on physical and organoleptic properties of breads. Food Chemistry, 2019, 276, 547-553.	4.2	14
64	Regulator RcsB Controls Prodigiosin Synthesis and Various Cellular Processes in Serratia marcescens JNB5-1. Applied and Environmental Microbiology, 2021, 87, .	1.4	13
65	Engineering of microbial cells for L-valine production: challenges and opportunities. Microbial Cell Factories, 2021, 20, 172.	1.9	13
66	MarR-type transcription factor RosR regulates glutamate metabolism network and promotes accumulation of L-glutamate in Corynebacterium glutamicum G01. Bioresource Technology, 2021, 342, 125945.	4.8	13
67	High-level production of L-valine in Escherichia coli using multi-modular engineering. Bioresource Technology, 2022, 359, 127461.	4.8	13
68	Heterologous expression and characterization of a new heme-catalase in <i>Bacillus subtilis</i> 168. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 729-740.	1.4	12
69	Development of a multi-enzymatic desymmetrization and its application for the biosynthesis of l -norvaline from dl -norvaline. Process Biochemistry, 2017, 55, 104-109.	1.8	12
70	Effects of functional β-glucan on proliferation, differentiation, metabolism and its anti-fibrosis properties in muscle cells. International Journal of Biological Macromolecules, 2018, 117, 287-293.	3.6	12
71	Relieving Allosteric Inhibition by Designing Active Inclusion Bodies and Coating of the Inclusion Bodies with Fe ₃ O ₄ Nanomaterials for Sustainable 2-Oxobutyric Acid Production. ACS Catalysis, 2018, 8, 8889-8901.	5.5	12
72	Intracellular Environment Improvement of Mycobacterium neoaurum for Enhancing Androst-1,4-Diene-3,17-Dione Production by Manipulating NADH and Reactive Oxygen Species Levels. Molecules, 2019, 24, 3841.	1.7	12

#	Article	IF	CITATIONS
73	Characterization of promising natural blue pigment from Vaccinium bracteatum thunb. leaves: Insights of the stability and the inhibition of α-amylase. Food Chemistry, 2020, 326, 126962.	4.2	12
74	Enhancing β-alanine production from glucose in genetically modified Corynebacterium glutamicum by metabolic pathway engineering. Applied Microbiology and Biotechnology, 2021, 105, 9153-9166.	1.7	12
75	Mutation breeding of high 4-androstene-3,17-dione-producing Mycobacterium neoaurum ZADF-4 by atmospheric and room temperature plasma treatment. Journal of Zhejiang University: Science B, 2015, 16, 286-295.	1.3	11
76	Efficient 9α-hydroxy-4-androstene-3,17-dione production by engineered Bacillus subtilis co-expressing Mycobacterium neoaurum 3-ketosteroid 9α-hydroxylase and B. subtilis glucose 1-dehydrogenase with NADH regeneration. SpringerPlus, 2016, 5, 1207.	1.2	11
77	Optimized whole cell biocatalyst from acetoin to 2,3â€butanediol through coexpression of acetoin reductase with <scp>NADH</scp> regeneration systems in engineered <i>Bacillus subtilis</i> . Journal of Chemical Technology and Biotechnology, 2017, 92, 2477-2487.	1.6	11
78	Lys–Arg mutation improved the thermostability of Bacillus cereus neutral protease through increased residue interactions. World Journal of Microbiology and Biotechnology, 2019, 35, 173.	1.7	11
79	PII Signal Transduction Protein GlnK Alleviates Feedback Inhibition of <i>N</i> -Acetyl- <scp> </scp> -Glutamate Kinase by <scp> </scp> -Arginine in Corynebacterium glutamicum. Applied and Environmental Microbiology, 2020, 86, .	1.4	11
80	Heterologous Expression and Rational Design of l-asparaginase from Rhizomucor miehei to Improve Thermostability. Biology, 2021, 10, 1346.	1.3	11
81	Controlling the transcription levels of <i>argGH</i> redistributed <scp>l</scp> -arginine metabolic flux in <i>N</i> -acetylglutamate kinase and ArgR-deregulated <i>Corynebacterium crenatum</i> . Journal of Industrial Microbiology and Biotechnology, 2016, 43, 55-66.	1.4	10
82	Improving the Production of Salt-Tolerant Glutaminase by Integrating Multiple Copies of Mglu into the Protease and 16S rDNA Genes of Bacillus subtilis 168. Molecules, 2019, 24, 592.	1.7	10
83	Engineered disulfide bonds improve thermostability and activity of Lâ€isoleucine hydroxylase for efficient 4â€HIL production in Bacillus subtilis 168. Engineering in Life Sciences, 2020, 20, 7-16.	2.0	10
84	Sesame flavour baijiu: a review. Journal of the Institute of Brewing, 2020, 126, 224-232.	0.8	10
85	Semi-quantitative activity assays for high-throughput screening of higher activity gamma glutamyl transferase and enzyme immobilization to efficiently synthesize L-theanine. Journal of Biotechnology, 2021, 330, 9-16.	1.9	10
86	Vaccinium bracteatum Thunb. as a promising resource of bioactive compounds with health benefits: An updated review. Food Chemistry, 2021, 356, 129738.	4.2	10
87	A Negative Regulator of Carotenogenesis in <i>Blakeslea trispora</i> . Applied and Environmental Microbiology, 2020, 86, .	1.4	10
88	Biotechnological Innovations and Therapeutic Application of Pediococcus and Lactic Acid Bacteria: The Next-Generation Microorganism. Frontiers in Bioengineering and Biotechnology, 2021, 9, 802031.	2.0	10
89	A novel green synthesis approach for natural bluish-violet pigments derived from water extracts of Vaccinium bracteatum Thunb. leaves. Industrial Crops and Products, 2019, 142, 111862.	2.5	9
90	Enhancement of l-arginine production by increasing ammonium uptake in an AmtR-deficient Corynebacterium crenatum mutant. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1155-1166.	1.4	9

#	Article	IF	CITATIONS
91	Integrated gene engineering synergistically improved substrate-product transport, cofactor generation and gene translation for cadaverine biosynthesis in E. coli. International Journal of Biological Macromolecules, 2021, 169, 8-17.	3.6	9
92	Enhanced production of L-arginine by improving carbamoyl phosphate supply in metabolically engineered Corynebacterium crenatum. Applied Microbiology and Biotechnology, 2021, 105, 3265-3276.	1.7	9
93	Evaluation of the physicochemical properties and in vitro digestibility of the complex formed between rice starch and a novel pigment from Vaccinium bracteatum Thunb. leaf. Food Chemistry, 2022, 374, 131627.	4.2	9
94	Enhanced intracellular soluble production of 3â€ketosteroidâ€ <scp>Δ¹</scp> â€dehydrogenase from <i>Mycobacterium neoaurum</i> in <i>Escherichia coli</i> and its application in the androstâ€1,4â€dieneâ€3,17â€dione production. Journal of Chemical Technology and Biotechnology, 2017, 92, 350-357.	1.6	8
95	Identification of bottlenecks in 4-androstene-3,17-dione/1,4-androstadiene-3,17-dione synthesis by Mycobacterium neoaurum JC-12 through comparative proteomics. Journal of Bioscience and Bioengineering, 2021, 131, 264-270.	1.1	8
96	Blakeslea trispora Photoreceptors: Identification and Functional Analysis. Applied and Environmental Microbiology, 2020, 86, .	1.4	7
97	Redistribution of Intracellular Metabolic Flow in <i>E. coli</i> Improves Carbon Atom Economy for High-Yield 2,5-Dimethylpyrazine Production. Journal of Agricultural and Food Chemistry, 2021, 69, 2512-2521.	2.4	7
98	Enhancement of <scp>l</scp> -Pipecolic Acid Production by Dynamic Control of Substrates and Multiple Copies of the <i>pipA</i> Gene in the <i>Escherichia coli</i> Genome. ACS Synthetic Biology, 2022, 11, 760-769.	1.9	7
99	Efficient production of d-amino acid oxidase in Escherichia coli by a trade-off between its expression and biomass using N-terminal modification. Bioresource Technology, 2017, 243, 716-723.	4.8	6
100	Improved thermostability and catalytic efficiency of overexpressed catalase from B. pumilus ML 413 (KatX2) by introducing disulfide bond C286-C289. Enzyme and Microbial Technology, 2018, 119, 10-16.	1.6	6
101	Synthetic engineering of Corynebacterium crenatum to selectively produce acetoin or 2,3-butanediol by one step bioconversion method. Microbial Cell Factories, 2019, 18, 128.	1.9	6
102	A Novel 3-Phytosterone-9α-Hydroxylase Oxygenation Component and Its Application in Bioconversion of 4-Androstene-3,17-Dione to 9α-Hydroxy-4-Androstene-3,17-Dione Coupling with A NADH Regeneration Formate Dehydrogenase. Molecules, 2019, 24, 2534.	1.7	6
103	Reconstruction of the Diaminopimelic Acid Pathway to Promote L-lysine Production in Corynebacterium glutamicum. International Journal of Molecular Sciences, 2021, 22, 9065.	1.8	6
104	L-valine production in Corynebacterium glutamicum based on systematic metabolic engineering: progress and prospects. Amino Acids, 2021, 53, 1301-1312.	1.2	6
105	Production of d-Tagatose by Whole-Cell Conversion of Recombinant Bacillus subtilis in the Absence of Antibiotics. Biology, 2021, 10, 1343.	1.3	6
106	Optimization of <scp>l</scp> â€arginine purification from <i>Corynebacterium crenatum</i> fermentation broth. Journal of Separation Science, 2020, 43, 2936-2948.	1.3	5
107	Cascade biocatalysis for production of enantiopure (S)-2-hydroxybutyric acid using recombinant Escherichia coli with a tunable multi-enzyme-coordinate expression system. Systems Microbiology and Biomanufacturing, 2021, 1, 234-244.	1.5	5
108	Engineering the 2,3-BD pathway in Bacillus subtilis by shifting the carbon flux in favor of 2,3-BD synthesis. Biochemical Engineering Journal, 2021, 169, 107969.	1.8	5

#	Article	IF	CITATIONS
109	Rational engineering of the Plasmodium falciparum l-lactate dehydrogenase loop involved in catalytic proton transfer to improve chiral 2-hydroxybutyric acid production. International Journal of Biological Macromolecules, 2021, 179, 71-79.	3.6	5
110	Isolation and Identification of an Efficient Aerobic Denitrifying Pseudomonas stutzeri Strain and Characterization of Its Nitrite Degradation. Catalysts, 2021, 11, 1214.	1.6	5
111	Identification of a novel cytochrome P450 17A2 enzyme catalyzing the C17α hydroxylation of progesterone and its application in engineered Pichia pastoris. Biochemical Engineering Journal, 2022, 177, 108264.	1.8	5
112	Efficient D-allulose synthesis under acidic conditions by auto-inducing expression of the tandem D-allulose 3-epimerase genes in Bacillus subtilis. Microbial Cell Factories, 2022, 21, 63.	1.9	5
113	Comparative transcriptome analysis reveals metabolic regulation of prodigiosin in Serratia marcescens. Systems Microbiology and Biomanufacturing, 2021, 1, 323-335.	1.5	4
114	Enhanced Prodigiosin Production in <i>Serratia marcescens</i> JNB5-1 by Introduction of a Polynucleotide Fragment into the <i>pigN</i> 3′ Untranslated Region and Disulfide Bonds into <i>O</i> -Methyl Transferase (PigF). Applied and Environmental Microbiology, 2021, 87, e0054321.	1.4	4
115	Enhancing the biotransformation efficiency of human CYP17A1 in Pichia pastoris by co-expressing CPR and glucose-6-phosphate dehydrogenase simultaneously. Systems Microbiology and Biomanufacturing, 2024, 4, 102-111.	1.5	4
116	High-level production of the agmatine in engineered Corynebacterium crenatum with the inhibition-releasing arginine decarboxylase. Microbial Cell Factories, 2022, 21, 16.	1.9	4
117	Increased Production of Riboflavin by Coordinated Expression of Multiple Genes in Operons in <i>Bacillus subtilis</i> . ACS Synthetic Biology, 2022, , .	1.9	4
118	Biochemical Characterization and Structural Insight into Interaction and Conformation Mechanisms of Serratia marcescens Lysine Decarboxylase (SmcadA). Molecules, 2021, 26, 697.	1.7	3
119	A genetic transformation system based on trp1 complementation in Candida glycerinogenes. World Journal of Microbiology and Biotechnology, 2011, 27, 1005-1008.	1.7	2
120	One-Pot Biocatalytic Preparation of Enantiopure Unusual α-Amino Acids from α-Hydroxy Acids via a Hydrogen-Borrowing Dual-Enzyme Cascade. Catalysts, 2020, 10, 1470.	1.6	2
121	Hepatoprotective ability of tetramethylpyrazine produced by Bacillus amyloliquefaciens. Systems Microbiology and Biomanufacturing, 2021, 1, 223-233.	1.5	2
122	Citrulline deiminase pathway provides ATP and boosts growth of Clostridium carboxidivorans P7. Biotechnology for Biofuels, 2021, 14, 204.	6.2	1