
Heikki Seppä

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8375551/publications.pdf Version: 2024-02-01

Η ΓΙΚΚΙ SEDDÃO

#	Article	IF	CITATIONS
1	July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructions. Holocene, 2001, 11, 527-539.	1.7	333
2	A 11,000yr palaeotemperature reconstruction from the southern boreal zone in Finland. Quaternary Science Reviews, 2003, 22, 541-554.	3.0	187
3	Holocene Climate Reconstructions from the Fennoscandian Tree-Line Area Based on Pollen Data from Toskaljavri. Quaternary Research, 2002, 57, 191-199.	1.7	165
4	A modern pollen-climate calibration set from northern Europe: developing and testing a tool for palaeoclimatological reconstructions. Journal of Biogeography, 2004, 31, 251-267.	3.0	163
5	Does pollen-assemblage richness reflect floristic richness? A review of recent developments and future challenges. Review of Palaeobotany and Palynology, 2016, 228, 1-25.	1.5	152
6	Changes of treelines and alpine vegetation in relation to post-glacial climate dynamics in northern Fennoscandia based on pollen and chironomid records. Journal of Quaternary Science, 2002, 17, 287-301.	2.1	144
7	Human population dynamics in Europe over the Last Glacial Maximum. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8232-8237.	7.1	140
8	High-resolution reconstruction of wetness dynamics in a southern boreal raised bog, Finland, during the late Holocene: a quantitative approach. Holocene, 2007, 17, 1093-1107.	1.7	136
9	Validation of climate model-inferred regional temperature change for late-glacial Europe. Nature Communications, 2014, 5, 4914.	12.8	129
10	Holocene annual mean temperature changes in Estonia and their relationship to solar insolation and atmospheric circulation patterns. Quaternary Research, 2004, 61, 22-31.	1.7	127
11	Pollen-based climate reconstruction techniques for late Quaternary studies. Earth-Science Reviews, 2020, 210, 103384.	9.1	123
12	Cold event at 8200 yr B.P. recorded in annually laminated lake sediments in eastern Europe. Geology, 2004, 32, 681.	4.4	122
13	Exploring climatic and biotic controls on Holocene vegetation change in Fennoscandia. Journal of Ecology, 2008, 96, 247-259.	4.0	122
14	Quaternary pollen analysis: recent progress in palaeoecology and palaeoclimatology. Progress in Physical Geography, 2003, 27, 548-579.	3.2	121
15	Holocene changes in vegetation composition in northern Europe: why quantitative pollen-based vegetation reconstructions matter. Quaternary Science Reviews, 2014, 90, 199-216.	3.0	112
16	A global database of Holocene paleotemperature records. Scientific Data, 2020, 7, 115.	5.3	112
17	The importance of northern peatland expansion to the late-Holocene rise of atmospheric methane. Quaternary Science Reviews, 2010, 29, 611-617.	3.0	109
18	Invasion of Norway spruce (<i>Picea abies</i>) and the rise of the boreal ecosystem in Fennoscandia. Journal of Ecology, 2009, 97, 629-640.	4.0	107

Ηεικκι Seppã¤

#	Article	IF	CITATIONS
19	Holocene vegetation and climate history on a continental-oceanic transect in northern Fennoscandia based on pollen and plant macrofossils. Boreas, 2004, 33, 211-223.	2.4	103
20	Integration of modern and past pollen accumulation rate (PAR) records across the arctic tree-line: a method for more precise vegetation reconstructions. Quaternary Science Reviews, 2006, 25, 1501-1516.	3.0	101
21	The European Modern Pollen Database (EMPD) project. Vegetation History and Archaeobotany, 2013, 22, 521-530.	2.1	101
22	Quantifying the effects of land use and climate on Holocene vegetation in Europe. Quaternary Science Reviews, 2017, 171, 20-37.	3.0	97
23	The pace of Holocene vegetation change – testing for synchronous developments. Quaternary Science Reviews, 2011, 30, 2805-2814.	3.0	88
24	Holocene vegetational and limnological changes in the Fennoscandian tree-line area as documented by pollen and diatom records from Lake Tsuolbmajavri, Finland. Ecoscience, 1999, 6, 621-635.	1.4	85
25	Did the mid-Holocene environmental changes cause the boom and bust of hunter-gatherer population size in eastern Fennoscandia?. Holocene, 2012, 22, 215-225.	1.7	79
26	Quantitative reconstruction of Holocene precipitation changes in southern Patagonia. Quaternary Research, 2009, 72, 410-420.	1.7	78
27	Bark beetles as agents of change in social–ecological systems. Frontiers in Ecology and the Environment, 2018, 16, S34.	4.0	74
28	Holocene climate dynamics in Latvia, eastern Baltic region: a pollenâ€based summer temperature reconstruction and regional comparison. Boreas, 2010, 39, 705-719.	2.4	73
29	Rapid Lateglacial tree population dynamics and ecosystem changes in the eastern Baltic region. Journal of Quaternary Science, 2009, 24, 802-815.	2.1	72
30	Quantitative palaeotemperature records inferred from fossil pollen and chironomid assemblages from Lake GilltjÄ r nen, northern central Sweden. Journal of Quaternary Science, 2006, 21, 831-841.	2.1	69
31	Postglacial trends in palynological richness in the northern Fennoscandian tree-line area and their ecological interpretation. Holocene, 1998, 8, 43-53.	1.7	62
32	Scattered late-glacial and early Holocene tree populations as dispersal nuclei for forest development in north-eastern European Russia. Journal of Biogeography, 2011, 38, 922-932.	3.0	60
33	The Holocene thermal maximum and late-Holocene cooling in the tundra of NE European Russia. Quaternary Research, 2011, 75, 501-511.	1.7	59
34	Title is missing!. Journal of Paleolimnology, 2000, 24, 69-79.	1.6	58
35	Longâ€ŧerm drivers of forest composition in a boreonemoral region: the relative importance of climate and human impact. Journal of Biogeography, 2013, 40, 1524-1534.	3.0	58
36	Calibrated pollen accumulation rates as a basis for quantitative tree biomass reconstructions. Holocene, 2009, 19, 209-220.	1.7	57

Ηεικκι Seppä

#	Article	IF	CITATIONS
37	Abrupt and consistent responses of aquatic and terrestrial ecosystems to the 8200 cal. yr cold event: a lacustrine record from Lake Arapisto, Finland. Holocene, 2007, 17, 457-467.	1.7	54
38	Holocene temperatures in Bohuslä, southwest Sweden: a quantitative reconstruction from fossil pollen data. Boreas, 2007, 36, 400-410.	2.4	54
39	Integrated varve and pollen-based temperature reconstruction from Finland: evidence for Holocene seasonal temperature patterns at high latitudes. Holocene, 2008, 18, 529-538.	1.7	53
40	Human influence as a potential source of bias in pollen-based quantitative climate reconstructions. Quaternary Science Reviews, 2014, 99, 112-121.	3.0	53
41	From microbial eukaryotes to metazoan vertebrates: Wide spectrum paleoâ€diversity in sedimentary ancient DNA over the last ~14,500Âyears. Geobiology, 2018, 16, 628-639.	2.4	49
42	Climatic influence on peatland formation and lateral expansion in subâ€arctic Fennoscandia. Boreas, 2010, 39, 761-769.	2.4	48
43	A North European pollen–climate calibration set: analysing the climatic responses of a biological proxy using novel regression tree methods. Quaternary Science Reviews, 2012, 45, 95-110.	3.0	47
44	Quantitative summer and winter temperature reconstructions from pollen and chironomid data between 15 and 8Âka BP in the Baltic–Belarus area. Quaternary International, 2015, 388, 4-11.	1.5	47
45	North Atlantic-Fennoscandian Holocene climate trends and mechanisms. Quaternary Science Reviews, 2016, 147, 365-378.	3.0	45
46	Rapid climatic changes during the Greenland stadial 1 (Younger Dryas) to early Holocene transition on the Norwegian Barents Sea coast. Boreas, 2002, 31, 215-225.	2.4	44
47	Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes. Atmospheric Chemistry and Physics, 2019, 19, 2015-2061.	4.9	42
48	Moisture stress of a hydrological year on tree growth in the Tibetan Plateau and surroundings. Environmental Research Letters, 2015, 10, 034010.	5.2	41
49	Late-Quaternary summer temperature changes in the northern-European tree-line region. Quaternary Research, 2008, 69, 404-412.	1.7	40
50	Patterns of modern pollen and plant richness across northern Europe. Journal of Ecology, 2019, 107, 1662-1677.	4.0	40
51	Lateâ€Quaternary palaeoclimatic research in Fennoscandia – A historical review. Boreas, 2010, 39, 655-673.	2.4	39
52	Comparing different calibration methods (WA/WA-PLS regression and Bayesian modelling) and different-sized calibration sets in pollen-based quantitative climate reconstruction. Holocene, 2012, 22, 413-424.	1.7	39
53	Sediment isotope tracers from Lake Saarikko, Finland, and implications for Holocene hydroclimatology. Quaternary Science Reviews, 2010, 29, 2146-2160.	3.0	38
54	The global hydroclimate response during the Younger Dryas event. Quaternary Science Reviews, 2018, 193, 84-97.	3.0	37

Ηεικκι Seppã¤

#	Article	IF	CITATIONS
55	Reconstructing palaeoclimatic variables from fossil pollen using boosted regression trees: comparison and synthesis with other quantitative reconstruction methods. Quaternary Science Reviews, 2014, 88, 69-81.	3.0	36
56	Assessing the Importance of Climate Variables for the Spatial Distribution of Modern Pollen Data in China. Quaternary Research, 2015, 83, 287-297.	1.7	35
57	Abrupt <i>Alnus</i> population decline at the end of the first millennium CE in Europe – The event ecology, possible causes and implications. Holocene, 2019, 29, 1335-1349.	1.7	34
58	The Eurasian Modern Pollen Database (EMPD), version 2. Earth System Science Data, 2020, 12, 2423-2445.	9.9	34
59	The effect of past changes in interâ€annual temperature variability on tree distribution limits. Journal of Biogeography, 2010, 37, 1394-1405.	3.0	32
60	Trees tracking a warmer climate: The Holocene range shift of hazel (<i>Corylus avellana</i>) in northern Europe. Holocene, 2015, 25, 53-63.	1.7	31
61	Invasion of Norway spruce diversifies the fire regime in boreal European forests. Journal of Ecology, 2011, 99, 395-403.	4.0	30
62	Holocene aquatic ecosystem change in the boreal vegetation zone of northern Finland. Journal of Paleolimnology, 2011, 45, 339-352.	1.6	30
63	Fusing pollen-stratigraphic and dendroclimatic proxy data to reconstruct summer temperature variability during the past 7.5Âka in subarctic Fennoscandia. Journal of Paleolimnology, 2012, 48, 275-286.	1.6	30
64	Flora, vegetation and climate at Sokli, northeastern Fennoscandia, during the Weichselian Middle Pleniglacial. Boreas, 2009, 38, 335-348.	2.4	29
65	Biotic turnover rates during the Pleistocene-Holocene transition. Quaternary Science Reviews, 2016, 151, 100-110.	3.0	28
66	Pollenâ€based palaeoclimate reconstructions over long glacial–interglacial timescales: methodological tests based on the Holocene and <scp>MIS</scp> 5d–c deposits at Sokli, northern Finland. Journal of Quaternary Science, 2013, 28, 271-282.	2.1	26
67	Unexpected Problems in AMS ¹⁴ C Dating of Fen Peat. Radiocarbon, 2014, 56, 95-108.	1.8	26
68	Post-glacial vegetation reconstruction and a possible 8200 cal. yr BP event from the low arctic of continental Nunavut, Canada. Journal of Quaternary Science, 2003, 18, 621-629.	2.1	25
69	Multiscale variation in drought controlled historical forest fire activity in the boreal forests of eastern Fennoscandia. Ecological Monographs, 2018, 88, 74-91.	5.4	25
70	When the pond turtle followed the reindeer: effect of the last extreme global warming event on the timing of faunal change in Northern Europe. Global Change Biology, 2011, 17, 2049-2053.	9.5	24
71	The role of climate, forest fires and human population size in Holocene vegetation dynamics in Fennoscandia. Journal of Vegetation Science, 2018, 29, 382-392.	2.2	24
72	Integrating fire-scar, charcoal and fungal spore data to study fire events in the boreal forest of northern Europe. Holocene, 2019, 29, 1480-1490.	1.7	24

Ηεικκι Seppã¤

#	Article	IF	CITATIONS
73	Holocene negative coupling of summer temperature and moisture availability over southeastern arid Central Asia. Climate Dynamics, 2020, 55, 1187-1208.	3.8	23
74	Vegetation dynamics during the Younger Dryas–Holocene transition in the extreme northern taiga zone, northeastern European Russia. Boreas, 2006, 35, 202-212.	2.4	22
75	Effects of melting ice sheets and orbital forcing on the early Holocene warming in the extratropical Northern Hemisphere. Climate of the Past, 2016, 12, 1119-1135.	3.4	22
76	Linking past cultural developments to palaeoenvironmental changes in Estonia. Vegetation History and Archaeobotany, 2009, 18, 315-327.	2.1	21
77	Using fire regimes to delineate zones in a high-resolution lake sediment record from the western United States. Quaternary Research, 2013, 79, 24-36.	1.7	21
78	Oceanic and atmospheric modes in the Pacific and Atlantic Oceans since the Little Ice Age (LIA): Towards a synthesis. Quaternary Science Reviews, 2019, 215, 293-307.	3.0	21
79	Hydroclimate Variations in Central and Monsoonal Asia over the Past 700 Years. PLoS ONE, 2014, 9, e102751.	2.5	20
80	Detection of the Askja AD 1875 cryptotephra in Latvia, Eastern Europe. Journal of Quaternary Science, 2016, 31, 437-441.	2.1	20
81	East Asian summer monsoon precipitation variations in China over the last 9500 years: A comparison of pollen-based reconstructions and model simulations. Holocene, 2016, 26, 592-602.	1.7	20
82	Lateâ€Holocene shore displacement of the Finnish south coast: diatom, litho―and chemostratigraphic evidence from three isolation basins. Boreas, 2000, 29, 219-231.	2.4	19
83	Modern pollen and land-use relationships in the Taihang mountains, Hebei province, northern China—a first step towards quantitative reconstruction of human-induced land cover changes. Vegetation History and Archaeobotany, 2013, 22, 463-477.	2.1	19
84	Widespread, episodic decline of alder (<i>Alnus</i>) during the medieval period in the boreal forest of Europe. Journal of Quaternary Science, 2017, 32, 903-907.	2.1	19
85	Role of forest fires in Holocene stand-scale dynamics in the unmanaged taiga forest of northwestern Russia. Holocene, 2014, 24, 1503-1514.	1.7	18
86	Holocene temperature trends in the extratropical Northern Hemisphere based on interâ€model comparisons. Journal of Quaternary Science, 2018, 33, 464-476.	2.1	18
87	A long-term record of human impacts on an urban ecosystem in the sediments of Töölönlahti Bay in Helsinki, Finland. Environmental Conservation, 1997, 24, 326-337.	1.3	17
88	Holocene fire frequency variability in Vesijako, Strict Nature Reserve, Finland, and its application to conservation and management. Biological Conservation, 2013, 166, 90-97.	4.1	17
89	A Bayesian spatiotemporal model for reconstructing climate from multiple pollen records. Annals of Applied Statistics, 2015, 9, .	1.1	17
90	An increase in the biogenic aerosol concentration as a contributing factor to the recent wetting trend in Tibetan Plateau. Scientific Reports, 2015, 5, 14628.	3.3	17

Ηεικκι Seppä

#	Article	IF	CITATIONS
91	The effect of calibration data set selection on quantitative palaeoclimatic reconstructions. Holocene, 2013, 23, 1650-1654.	1.7	16
92	Holocene temperature evolution in the Northern Hemisphere high latitudes – Model-data comparisons. Quaternary Science Reviews, 2017, 173, 101-113.	3.0	16
93	Spatial and temporal patterns of Holocene precipitation change in the Iberian Peninsula. Boreas, 2022, 51, 776-792.	2.4	16
94	Reconciling pollen-stratigraphical and tree-ring evidence for high- and low-frequency temperature variability in the past millennium. Quaternary Science Reviews, 2010, 29, 3905-3918.	3.0	15
95	Holocene stand-scale vegetation dynamics and fire history of an old-growth spruce forest in southern Finland. Vegetation History and Archaeobotany, 2015, 24, 731-741.	2.1	14
96	Interdecadal hydroclimate teleconnections between Asia and North America over the past 600Âyears. Climate Dynamics, 2015, 44, 1777-1787.	3.8	14
97	Human responses to early Holocene climate variability in eastern Fennoscandia. Quaternary International, 2018, 465, 287-297.	1.5	14
98	Norway spruce postglacial recolonization of Fennoscandia. Nature Communications, 2022, 13, 1333.	12.8	14
99	Holocene History of Alpine Vegetation and Forestline on PyhÃkero Mountain, Northern Finland. Arctic, Antarctic, and Alpine Research, 2004, 36, 607-614.	1.1	13
100	Holocene vegetation and climate history on a continentalâ€oceanic transect in northern Fennoscandia based on pollen and plant macrofossils. Boreas, 2004, 33, 211-223.	2.4	13
101	Long-term forest composition and its drivers in taiga forest in NW Russia. Vegetation History and Archaeobotany, 2016, 25, 221-236.	2.1	13
102	Covarying Hydroclimate Patterns between Monsoonal Asia and North America over the Past 600 Years. Journal of Climate, 2014, 27, 8017-8033.	3.2	12
103	The long-term development of urban vegetation in Helsinki, Finland: A pollen diagram from Ti¿½ï¿½nlahti. Vegetation History and Archaeobotany, 1997, 6, 91-103.	2.1	10
104	Evidence of abrupt climate change at 9.3 ka and 8.2 ka in the central Canadian Arctic: Connection to the North Atlantic and Atlantic Meridional Overturning Circulation. Quaternary Science Reviews, 2019, 219, 204-217.	3.0	10
105	Title is missing!. Journal of Paleolimnology, 1998, 19, 385-398.	1.6	9
106	Importance of climate, forest fires and human population size in the Holocene boreal forest composition change in northern Europe. Boreas, 2016, 45, 688-702.	2.4	9
107	A Bayesian multinomial regression model for palaeoclimate reconstruction with time uncertainty. Environmetrics, 2016, 27, 409-422.	1.4	9
108	Past 200 kyr hydroclimate variability in the western Mediterranean and its connection to the African Humid Periods. Scientific Reports, 2022, 12, .	3.3	9

Ηεικκι Seppä

#	Article	IF	CITATIONS
109	Rapid climatic changes during the Greenland stadial 1 (Younger Dryas) to early Holocene transition on the Norwegian Barents Sea coast. Boreas, 2002, 31, 215-225.	2.4	8

110 Current continental palaeoclimatic research in the Nordic region (100 years since Gunnar Andersson) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

111	How robust are Holocene treeline simulations? A model–data comparison in the European Arctic treeline region. Journal of Quaternary Science, 2013, 28, 595-604.	2.1	8
112	Late glacial and early Holocene climate and environmental changes in the eastern Baltic area inferred from sediment C/N ratio. Journal of Paleolimnology, 2019, 61, 1-16.	1.6	8
113	Spatial contrasts of the Holocene hydroclimate trend between North and East Asia. Quaternary Science Reviews, 2020, 227, 106036.	3.0	8
114	Climatic and hydrological variability as a driver of the Lake Gościąż biota during the Younger Dryas. Catena, 2022, 212, 106049.	5.0	7
115	Time-varying relationships among oceanic and atmospheric modes: A turning point at around 1940. Quaternary International, 2018, 487, 12-25.	1.5	6
116	Patterns in recent and Holocene pollen accumulation rates across Europe – the Pollen Monitoring Programme Database as a tool for vegetation reconstruction. Biogeosciences, 2021, 18, 4511-4534.	3.3	5
117	Late-Holocene shore displacement of the Finnish south coast: diatom, litho- and chemostratigraphic evidence from three isolation basins. Boreas, 2000, 29, 219-231.	2.4	5
118	Reliability of temperature signal in various climate indicators from northern Europe. PLoS ONE, 2017, 12, e0180042.	2.5	5
119	An interdecadal climate dipole between Northeast Asia and Antarctica over the past five centuries. Climate Dynamics, 2019, 52, 765-775.	3.8	4
120	Use and misuse of the term †̃glacial relict' in the Central European biogeography and conservation ecology of insects. Insect Conservation and Diversity, 2015, 8, 389-391.	3.0	3
121	Climate of the late Pleistocene and early Holocene in coastal South China inferred from submerged wood samples. Quaternary International, 2017, 447, 111-117.	1.5	3
122	John Birks: Pioneer in quantitative palaeoecology. Holocene, 2015, 25, 3-16.	1.7	1