Yanhao Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8375313/publications.pdf Version: 2024-02-01

ΥλΝΗΛΟ ΥΠ

#	Article	IF	CITATIONS
1	One-Dimensional Titanium Dioxide Nanomaterials: Nanowires, Nanorods, and Nanobelts. Chemical Reviews, 2014, 114, 9346-9384.	23.0	601
2	Ultrathin Surface Coating Enables Stabilized Zinc Metal Anode. Advanced Materials Interfaces, 2018, 5, 1800848.	1.9	476
3	H ₂ V ₃ O ₈ Nanowire/Graphene Electrodes for Aqueous Rechargeable Zinc Ion Batteries with High Rate Capability and Large Capacity. Advanced Energy Materials, 2018, 8, 1800144.	10.2	427
4	Ferroelectric Polarization-Enhanced Photoelectrochemical Water Splitting in TiO ₂ –BaTiO ₃ Core–Shell Nanowire Photoanodes. Nano Letters, 2015, 15, 7574-7580.	4.5	280
5	Chemically Functionalized Natural Cellulose Materials for Effective Triboelectric Nanogenerator Development. Advanced Functional Materials, 2017, 27, 1700794.	7.8	223
6	Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. Nature Energy, 2017, 2, .	19.8	217
7	Piezoelectric and Triboelectric Dual Effects in Mechanical-Energy Harvesting Using BaTiO ₃ /Polydimethylsiloxane Composite Film. ACS Applied Materials & Interfaces, 2016, 8, 34335-34341.	4.0	194
8	Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering. Nano Energy, 2014, 9, 237-244.	8.2	193
9	Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy, 2016, 30, 103-108.	8.2	185
10	Simultaneous Enhancement of Charge Separation and Hole Transportation in a TiO ₂ –SrTiO ₃ Core–Shell Nanowire Photoelectrochemical System. Advanced Materials, 2017, 29, 1701432.	11.1	165
11	Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development. Extreme Mechanics Letters, 2016, 9, 514-530.	2.0	160
12	Sequential Infiltration Synthesis of Doped Polymer Films with Tunable Electrical Properties for Efficient Triboelectric Nanogenerator Development. Advanced Materials, 2015, 27, 4938-4944.	11.1	159
13	Enhanced Photoelectrochemical Performance from Rationally Designed Anatase/Rutile TiO ₂ Heterostructures. ACS Applied Materials & Interfaces, 2016, 8, 12239-12245.	4.0	147
14	Biocompatibility and in vivo operation of implantable mesoporous PVDF-based nanogenerators. Nano Energy, 2016, 27, 275-281.	8.2	141
15	Air-Stable Porous Fe ₂ N Encapsulated in Carbon Microboxes with High Volumetric Lithium Storage Capacity and a Long Cycle Life. Nano Letters, 2017, 17, 5740-5746.	4.5	132
16	Development of Lead Iodide Perovskite Solar Cells Using Three-Dimensional Titanium Dioxide Nanowire Architectures. ACS Nano, 2015, 9, 564-572.	7.3	125
17	Evolution of Hollow TiO ₂ Nanostructures via the Kirkendall Effect Driven by Cation Exchange with Enhanced Photoelectrochemical Performance. Nano Letters, 2014, 14, 2528-2535.	4.5	113
18	Highly Efficient Capillary Photoelectrochemical Water Splitting Using Cellulose Nanofiberâ€Templated TiO ₂ Photoanodes. Advanced Materials, 2014, 26, 2262-2267.	11.1	104

Υάνμαο Υυ

#	Article	IF	CITATIONS
19	VS ₄ Nanoparticles Anchored on Graphene Sheets as a Highâ€Rate and Stable Electrode Material for Sodium Ion Batteries. ChemSusChem, 2018, 11, 735-742.	3.6	93
20	Allâ€Textile Triboelectric Generator Compatible with Traditional Textile Process. Advanced Materials Technologies, 2016, 1, 1600147.	3.0	75
21	Surface-Plasmon-Resonance-Enhanced Photoelectrochemical Water Splitting from Au-Nanoparticle-Decorated 3D TiO ₂ Nanorod Architectures. Journal of Physical Chemistry C, 2017, 121, 12071-12079.	1.5	72
22	Mesoporous Piezoelectric Polymer Composite Films with Tunable Mechanical Modulus for Harvesting Energy from Liquid Pressure Fluctuation. Advanced Functional Materials, 2016, 26, 6760-6765.	7.8	69
23	Piezotronic-Enhanced Photoelectrochemical Reactions in Ni(OH) ₂ -Decorated ZnO Photoanodes. Journal of Physical Chemistry Letters, 2015, 6, 3410-3416.	2.1	67
24	Study of long-term biocompatibility and bio-safety of implantable nanogenerators. Nano Energy, 2018, 51, 728-735.	8.2	67
25	Implanted Battery-Free Direct-Current Micro-Power Supply from in Vivo Breath Energy Harvesting. ACS Applied Materials & Interfaces, 2018, 10, 42030-42038.	4.0	54
26	Boron additive passivated carbonate electrolytes for stable cycling of 5ÂV lithium–metal batteries. Journal of Materials Chemistry A, 2019, 7, 594-602.	5.2	48
27	Effective anti-biofouling enabled by surface electric disturbance from water wave-driven nanogenerator. Nano Energy, 2019, 57, 558-565.	8.2	45
28	Piezotronics in Photoâ€Electrochemistry. Advanced Materials, 2018, 30, e1800154.	11.1	44
29	Surface Gradient Ti-Doped MnO ₂ Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied Materials & Interfaces, 2018, 10, 44376-44384.	4.0	41
30	Metastable Intermediates in Amorphous Titanium Oxide: A Hidden Role Leading to Ultra-Stable Photoanode Protection. Nano Letters, 2018, 18, 5335-5342.	4.5	36
31	Nature Degradable, Flexible, and Transparent Conductive Substrates from Green and Earth-Abundant Materials. Scientific Reports, 2017, 7, 4936.	1.6	34
32	Wafer-scale synthesis of ultrathin CoO nanosheets with enhanced electrochemical catalytic properties. Journal of Materials Chemistry A, 2017, 5, 9060-9066.	5.2	31
33	A wafer-scale 1 nm Ni(OH) ₂ nanosheet with superior electrocatalytic activity for the oxygen evolution reaction. Nanoscale, 2018, 10, 5054-5059.	2.8	31
34	Colorimetric Ethanol Indicator Based on Instantaneous, Localized Wetting of a Photonic Crystal. ACS Applied Materials & Interfaces, 2020, 12, 1924-1929.	4.0	26
35	Tailored TiO ₂ Protection Layer Enabled Efficient and Stable Microdome Structured pâ€GaAs Photoelectrochemical Cathodes. Advanced Energy Materials, 2020, 10, 1902985.	10.2	25
36	Decoupling the charge collecting and screening effects in piezotronics-regulated photoelectrochemical systems by using graphene as the charge collector. Nano Energy, 2018, 48, 377-382.	8.2	14

Υάνμαο Υυ

#	Article	IF	CITATIONS
37	Semiconductor Nanowires for Energy Harvesting. Semiconductors and Semimetals, 2016, 94, 297-368.	0.4	9
38	Semiconductiveâ€Ferroelectricâ€Enhanced Photoâ€Electrochemistry with Collective Improvements on Light Absorption, Charge Separation, and Carrier Transportation. Advanced Materials Interfaces, 2021, 8, 2101227.	1.9	8
39	Atomic Layer Deposition for Advanced Electrode Design in Photoelectrochemical and Triboelectric Systems. Advanced Materials Interfaces, 2017, 4, 1600835.	1.9	7
40	Mesoporous carbon nanofiber network derived from agarose for supercapacitor electrode. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	5
41	Photoelectrodes: Highly Efficient Capillary Photoelectrochemical Water Splitting Using Cellulose Nanofiberâ€Templated TiO ₂ Photoanodes (Adv. Mater. 14/2014). Advanced Materials, 2014, 26, 2110-2110.	11.1	4