Hui-Ling Yen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8374836/publications.pdf

Version: 2024-02-01

53660 30848 15,768 103 45 102 citations h-index g-index papers 113 113 113 25908 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. New England Journal of Medicine, 2020, 382, 1177-1179.	13.9	4,195
2	Respiratory virus shedding in exhaled breath and efficacy of face masks. Nature Medicine, 2020, 26, 676-680.	15.2	1,753
3	Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe, The, 2020, 1, e10.	3.4	1,479
4	Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature, 2020, 583, 834-838.	13.7	1,185
5	Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Research, 2020, 178, 104786.	1.9	737
6	The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. Journal of Experimental Medicine, 2006, 203, 689-697.	4.2	316
7	Lethality to Ferrets of H5N1 Influenza Viruses Isolated from Humans and Poultry in 2004. Journal of Virology, 2005, 79, 2191-2198.	1.5	315
8	Association between adverse clinical outcome in human disease caused by novel influenza A H7N9 virus and sustained viral shedding and emergence of antiviral resistance. Lancet, The, 2013, 381, 2273-2279.	6.3	308
9	Influenza Viruses Resistant to the Antiviral Drug Oseltamivir: Transmission Studies in Ferrets. Journal of Infectious Diseases, 2004, 190, 1627-1630.	1.9	275
10	Short-range airborne route dominates exposure of respiratory infection during close contact. Building and Environment, 2020, 176, 106859.	3.0	256
11	Neuraminidase Inhibitor-Resistant Influenza Viruses May Differ Substantially in Fitness and Transmissibility. Antimicrobial Agents and Chemotherapy, 2005, 49, 4075-4084.	1.4	226
12	Hemagglutinin–neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14264-14269.	3.3	197
13	Molecular Changes in the Polymerase Genes (PA and PB1) Associated with High Pathogenicity of H5N1 Influenza Virus in Mallard Ducks. Journal of Virology, 2007, 81, 8515-8524.	1.5	178
14	De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2. Science, 2020, 370, 1208-1214.	6.0	172
15	Importance of Neuraminidase Active-Site Residues to the Neuraminidase Inhibitor Resistance of Influenza Viruses. Journal of Virology, 2006, 80, 8787-8795.	1.5	169
16	Virulence May Determine the Necessary Duration and Dosage of Oseltamivir Treatment for Highly Pathogenic A/Vietnam/1203/04 Influenza Virus in Mice. Journal of Infectious Diseases, 2005, 192, 665-672.	1.9	160
17	Neuraminidase Inhibitor-Resistant Recombinant A/Vietnam/1203/04 (H5N1) Influenza Viruses Retain Their Replication Efficiency and Pathogenicity In Vitro and In Vivo. Journal of Virology, 2007, 81, 12418-12426.	1.5	155
18	Host response to influenza virus: protection versus immunopathology. Current Opinion in Immunology, 2010, 22, 475-481.	2.4	144

#	Article	IF	Citations
19	Transmission of SARS-CoV-2 delta variant (AY.127) from pet hamsters to humans, leading to onward human-to-human transmission: a case study. Lancet, The, 2022, 399, 1070-1078.	6.3	140
20	Inefficient Transmission of H5N1 Influenza Viruses in a Ferret Contact Model. Journal of Virology, 2007, 81, 6890-6898.	1.5	138
21	The pH of Activation of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity and Transmissibility in Ducks. Journal of Virology, 2010, 84, 1527-1535.	1.5	124
22	Toilets dominate environmental detection of severe acute respiratory syndrome coronavirus 2 in a hospital. Science of the Total Environment, 2021, 753, 141710.	3.9	114
23	Detection and Control of Influenza Outbreaks in Well-Vaccinated Nursing Home Populations. Clinical Infectious Diseases, 2004, 39, 459-464.	2.9	110
24	Pandemic Influenza as a Current Threat. Current Topics in Microbiology and Immunology, 2009, 333, 3-24.	0.7	106
25	Evaluation of a SARS-CoV-2 Surrogate Virus Neutralization Test for Detection of Antibody in Human, Canine, Cat, and Hamster Sera. Journal of Clinical Microbiology, 2021, 59, .	1.8	102
26	Targeting the host or the virus: Current and novel concepts for antiviral approaches against influenza virus infection. Antiviral Research, 2012, 96, 391-404.	1.9	97
27	Mini viral RNAs act as innate immune agonists during influenza virus infection. Nature Microbiology, 2018, 3, 1234-1242.	5.9	96
28	Amino Acid Residues in the Fusion Peptide Pocket Regulate the pH of Activation of the H5N1 Influenza Virus Hemagglutinin Protein. Journal of Virology, 2009, 83, 3568-3580.	1.5	94
29	Generation and characterization of influenza A viruses with altered polymerase fidelity. Nature Communications, 2014, 5, 4794.	5 . 8	94
30	Changes in H5N1 influenza virus hemagglutinin receptor binding domain affect systemic spread. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 286-291.	3.3	93
31	Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2017–2018. Antiviral Research, 2020, 175, 104718.	1.9	91
32	Resistance to Neuraminidase Inhibitors Conferred by an R292K Mutation in a Human Influenza Virus H7N9 Isolate Can Be Masked by a Mixed R/K Viral Population. MBio, 2013, 4, .	1.8	90
33	Crossâ€Protectiveness and Immunogenicity of Influenza A/Duck/Singapore/3/97(H5) Vaccines against Infection with A/Vietnam/1203/04(H5N1) Virus in Ferrets. Journal of Infectious Diseases, 2006, 194, 1040-1043.	1.9	86
34	Glycomic Characterization of Respiratory Tract Tissues of Ferrets. Journal of Biological Chemistry, 2014, 289, 28489-28504.	1.6	82
35	Influenza A Virus Expresses High Levels of an Unusual Class of Small Viral Leader RNAs in Infected Cells. MBio, 2010, 1, .	1.8	80
36	Close contact behavior in indoor environment and transmission of respiratory infection. Indoor Air, 2020, 30, 645-661.	2.0	74

#	Article	IF	Citations
37	Multi-route transmission potential of SARS-CoV-2 in healthcare facilities. Journal of Hazardous Materials, 2021, 402, 123771.	6.5	72
38	Defining the sizes of airborne particles that mediate influenza transmission in ferrets. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2386-E2392.	3.3	71
39	A broadly neutralizing human monoclonal antibody is effective against H7N9. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10890-10895.	3.3	67
40	Amino Acid Residues 253 and 591 of the PB2 Protein of Avian Influenza Virus A H9N2 Contribute to Mammalian Pathogenesis. Journal of Virology, 2011, 85, 9641-9645.	1.5	65
41	Influenza H5/H7 Virus Vaccination in Poultry and Reduction of Zoonotic Infections, Guangdong Province, China, 2017–18. Emerging Infectious Diseases, 2019, 25, 116-118.	2.0	61
42	A novel H1N1 virus causes the first pandemic of the 21 st century. European Journal of Immunology, 2009, 39, 2946-2954.	1.6	59
43	Ferrets as Models for Influenza Virus Transmission Studies and Pandemic Risk Assessments. Emerging Infectious Diseases, 2018, 24, 965-971.	2.0	56
44	Mx1 Gene Protects Mice Against the Highly Lethal Human H5N1 Influenza Virus. Cell Cycle, 2007, 6, 2417-2421.	1.3	54
45	Isolation of H5N6, H7N9 and H9N2 avian influenza A viruses from air sampled at live poultry markets in China, 2014 and 2015. Eurosurveillance, 2016, 21, .	3.9	54
46	Different genetic barriers for resistance to HA stem antibodies in influenza H3 and H1 viruses. Science, 2020, 368, 1335-1340.	6.0	51
47	Quantification of Influenza Virus RNA in Aerosols in Patient Rooms. PLoS ONE, 2016, 11, e0148669.	1.1	51
48	Higher polymerase activity of a human influenza virus enhances activation of the hemagglutinin-induced Raf/MEK/ERK signal cascade. Virology Journal, 2007, 4, 134.	1.4	46
49	Current and novel antiviral strategies for influenza infection. Current Opinion in Virology, 2016, 18, 126-134.	2.6	46
50	Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2018–2020. Antiviral Research, 2022, 200, 105281.	1.9	44
51	Influenza (H5N1) Viruses in Poultry, Russian Federation, 2005–2006. Emerging Infectious Diseases, 2007, 13, 539-546.	2.0	43
52	CLEC5A-Mediated Enhancement of the Inflammatory Response in Myeloid Cells Contributes to Influenza Virus Pathogenicity <i>In Vivo</i> Iournal of Virology, 2017, 91, .	1.5	41
53	Sample Size Considerations for One-to-One Animal Transmission Studies of the Influenza A Viruses. PLoS ONE, 2013, 8, e55358.	1.1	36
54	Tissue Tropism of Swine Influenza Viruses and Reassortants in <i>Ex Vivo</i> Cultures of the Human Respiratory Tract and Conjunctiva. Journal of Virology, 2011, 85, 11581-11587.	1.5	35

#	Article	IF	Citations
55	Comparable Fitness and Transmissibility between Oseltamivir-Resistant Pandemic 2009 and Seasonal H1N1 Influenza Viruses with the H275Y Neuraminidase Mutation. Journal of Virology, 2012, 86, 10558-10570.	1.5	33
56	$1\hat{a}$ €²-Ribose cyano substitution allows Remdesivir to effectively inhibit nucleotide addition and proofreading during SARS-CoV-2 viral RNA replication. Physical Chemistry Chemical Physics, 2021, 23, 5852-5863.	1.3	33
57	Drug susceptibility profile and pathogenicity of H7N9 influenza virus (Anhui1 lineage) with R292K substitution. Emerging Microbes and Infections, 2014, 3, 1-9.	3.0	32
58	Predominant airborne transmission and insignificant fomite transmission of SARS-CoV-2 in a two-bus COVID-19 outbreak originating from the same pre-symptomatic index case. Journal of Hazardous Materials, 2022, 425, 128051.	6.5	30
59	The R292K Mutation That Confers Resistance to Neuraminidase Inhibitors Leads to Competitive Fitness Loss of A/Shanghai/1/2013 (H7N9) Influenza Virus in Ferrets. Journal of Infectious Diseases, 2014, 210, 1900-1908.	1.9	27
60	Tropism and innate host responses of influenza A/H5N6 virus: an analysis of <i>exÂvivo </i> and <i>in vitro </i> cultures of the human respiratory tract. European Respiratory Journal, 2017, 49, 1601710.	3.1	27
61	Rapid Detection of Reassortment of Pandemic H1N1/2009 Influenza Virus. Clinical Chemistry, 2010, 56, 1340-1344.	1.5	26
62	Transmission of H7N9 Influenza Viruses with a Polymorphism at PB2 Residue 627 in Chickens and Ferrets. Journal of Virology, 2015, 89, 9939-9951.	1.5	26
63	Reducing Influenza Virus Transmission: The Potential Value of Antiviral Treatment. Clinical Infectious Diseases, 2022, 74, 532-540.	2.9	25
64	Isolation of Highly Pathogenic Avian Influenza H5N1 Virus from Saker Falcons (Falco cherrug) in the Middle East. Advances in Virology, 2009, 2009, 1-7.	0.5	21
65	Detection of highly pathogenic influenza and pandemic influenza virus in formalin fixed tissues by immunohistochemical methods. Journal of Virological Methods, 2012, 179, 409-413.	1.0	20
66	Investigation of the binding and cleavage characteristics of <scp>N</scp> 1 neuraminidases from avian, seasonal, and pandemic influenza viruses using saturation transfer difference nuclear magnetic resonance. Influenza and Other Respiratory Viruses, 2014, 8, 235-242.	1.5	20
67	Assessing the risk of downwind spread of avian influenza virus via airborne particles from an urban wholesale poultry market. Building and Environment, 2018, 127, 120-126.	3.0	19
68	Targeting host calpain proteases decreases influenza A virus infection. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L689-L699.	1.3	17
69	Comparative mutational analyses of influenza A viruses. Rna, 2015, 21, 36-47.	1.6	16
70	Reduced Pathogenicity and Transmission Potential of Omicron BA.1 and BA.2 Sublineages Compared with the Early Severe Acute Respiratory Syndrome Coronavirus 2 D614G Variant in Syrian Hamsters. Journal of Infectious Diseases, 2023, 227, 1143-1152.	1.9	16
71	Detection of Influenza and Other Respiratory Viruses in Air Sampled From a University Campus: A Longitudinal Study. Clinical Infectious Diseases, 2019, 70, 850-858.	2.9	15
72	Avian Influenza Virus Detection Rates in Poultry and Environment at Live Poultry Markets, Guangdong, China. Emerging Infectious Diseases, 2020, 26, 591-595.	2.0	15

#	Article	IF	Citations
73	Lack of cross-transmission of SARS-CoV-2 between passenger's cabins on the Diamond Princess cruise ship. Building and Environment, 2021, 198, 107839.	3.0	14
74	Seasonality of avian influenza A(H7N9) activity and risk of human A(H7N9) infections from live poultry markets. Journal of Infection, 2015, 71, 690-693.	1.7	13
75	Neutralizing Monoclonal Antibodies That Target the Spike Receptor Binding Domain Confer Fc Receptor-Independent Protection against SARS-CoV-2 Infection in Syrian Hamsters. MBio, 2021, 12, e0239521.	1.8	13
76	The role of the N-terminal caspase cleavage site in the nucleoprotein of influenza A virus in vitro and in vivo. Archives of Virology, 2008, 153, 427-434.	0.9	12
77	Bird flu in mammals. Nature, 2012, 486, 332-333.	13.7	12
78	Numerical modeling of particle deposition in ferret airways: A comparison with humans. Aerosol Science and Technology, 2017, 51, 477-487.	1.5	12
79	Genetic analysis of H7N9 highly pathogenic avian influenza virus in Guangdong, China, 2016–2017. Journal of Infection, 2018, 76, 93-96.	1.7	12
80	Robustness of the Ferret Model for Influenza Risk Assessment Studies: a Cross-Laboratory Exercise. MBio, 2022, 13, .	1.8	12
81	Mapping Antibody Epitopes of the Avian H5N1 Influenza Virus. PLoS Medicine, 2009, 6, e1000064.	3.9	11
82	CK2beta gene silencing increases cell susceptibility to influenza A virus infection resulting in accelerated virus entry and higher viral protein content. Journal of Molecular Signaling, 2008, 3, 13.	0.5	9
83	Serum anti-neuraminidase antibody responses in human influenza A(H1N1)pdm09 virus infections. Emerging Microbes and Infections, 2019, 8, 404-412.	3.0	9
84	A(H1N1)pdm09 Influenza Viruses Replicating in Ferret Upper or Lower Respiratory Tract Differed in Onward Transmission Potential by Air. Journal of Infectious Diseases, 2022, 225, 65-74.	1.9	9
85	Deposition of bronchiole-originated droplets in the lower airways during exhalation. Journal of Aerosol Science, 2020, 142, 105524.	1.8	8
86	Phenotypic and Functional Characteristics of a Novel Influenza Virus Hemagglutinin-Specific Memory NK Cell. Journal of Virology, 2021, 95, .	1.5	8
87	Ancestral sequence reconstruction pinpoints adaptations that enable avian influenza virus transmission in pigs. Nature Microbiology, 2021, 6, 1455-1465.	5.9	7
88	Monitoring Avian Influenza Viruses from Chicken Carcasses Sold at Markets, China, 2016. Emerging Infectious Diseases, 2017, 23, 1714-1717.	2.0	6
89	Seroprevalence of dogs in Hong Kong to human and canine influenza viruses. Veterinary Record Open, 2019, 6, e000327.	0.3	6
90	Limited onward transmission potential of reassortment genotypes from chickens co-infected with H9N2 and H7N9 avian influenza viruses. Emerging Microbes and Infections, 2021, 10, 2030-2041.	3.0	6

#	Article	IF	Citations
91	Determining Existing Human Population Immunity as Part of Assessing Influenza Pandemic Risk. Emerging Infectious Diseases, 2022, 28, 977-985.	2.0	6
92	H5N1 in Asia. Monographs in Virology, 2008, , 11-26.	0.6	5
93	Oral and Poster Manuscripts. Influenza and Other Respiratory Viruses, 2011, 5, 54-442.	1.5	5
94	Transmissibility of pandemic H1N1 and genetically related swine influenza viruses in ferrets. Influenza and Other Respiratory Viruses, 2011, 5, 85-7.	1.5	5
95	Conservation of T cell epitopes between seasonal influenza viruses and the novel influenza A H7N9 virus. Virologica Sinica, 2014, 29, 170-175.	1.2	4
96	Cellular tropism of SARS-CoV-2 in the respiratory tract of Syrian hamsters and B6.Cg-Tg(K18-ACE2)2Prlmn/J transgenic mice. Veterinary Pathology, 2022, 59, 639-647.	0.8	4
97	Evidence-Based Options for Controlling Respiratory Virus Transmission. Emerging Infectious Diseases, 2017, 23, .	2.0	4
98	Influenza surveillance in poultry market and its inter-species transmission in Taiwan. International Congress Series, 2001, 1219, 201-211.	0.2	3
99	A novel partial lid for mechanical defeatherers reduced aerosol dispersion during processing of avian influenza virus infected poultry. PLoS ONE, 2019, 14, e0216478.	1.1	3
100	Influenza pandemic plan: integrated wild bird/domestic avian/swine/human flu surveillance systems in Taiwan. International Congress Series, 2004, 1263, 407-412.	0.2	2
101	Transmission and Pathogenicity of H5N1 Influenza Viruses. Novartis Foundation Symposium, 0, , 128-140.	1.2	2
102	Resistance to Influenza Neuraminidase Inhibitors. , 2017, , 491-501.		1
103	Influenza H5/H7 Virus Vaccination in Poultry and Reduction of Zoonotic Infections, Guangdong Province, China, 2017–18. Emerging Infectious Diseases, 2019, 25, .	2.0	0