Lutz Heinemann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8374717/publications.pdf

Version: 2024-02-01

271 papers 13,463 citations

51 h-index 27406 106 g-index

296 all docs

 $\begin{array}{c} 296 \\ \\ \text{docs citations} \end{array}$

296 times ranked

8303 citing authors

#	Article	IF	Citations
1	External Physical and Technical Influences on Medical Devices for Diabetes Therapy. Journal of Diabetes Science and Technology, 2023, 17, 826-832.	2.2	5
2	A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring Validated by Clinician Ratings. Journal of Diabetes Science and Technology, 2023, 17, 1226-1242.	2.2	69
3	Insulin Titration Guidelines for Patients With Type 1 Diabetes: It Is About Time!. Journal of Diabetes Science and Technology, 2023, 17, 1066-1076.	2.2	2
4	Needle Technology for Insulin Administration: A Century of Innovation. Journal of Diabetes Science and Technology, 2023, 17, 449-457.	2.2	6
5	Understanding Biosimilar Insulins - Development, Manufacturing, and Clinical Trials. Journal of Diabetes Science and Technology, 2023, 17, 1649-1661.	2.2	3
6	Level of Digitalization in Germany: Results of the Diabetes Digitalization and Technology (D.U.T) Report 2020. Journal of Diabetes Science and Technology, 2022, 16, 144-151.	2.2	6
7	Algorithms for Automated Insulin Delivery: An Overview. Journal of Diabetes Science and Technology, 2022, 16, 1228-1238.	2.2	8
8	Products for Monitoring Glucose Levels in the Human Body With Noninvasive Optical, Noninvasive Fluid Sampling, or Minimally Invasive Technologies. Journal of Diabetes Science and Technology, 2022, 16, 168-214.	2.2	30
9	The Need for Sharps Waste Disposal Guidelines for Commercial Airports. Journal of Diabetes Science and Technology, 2022, 16, 1370-1375.	2.2	4
10	Patients' Experience of New Technologies and Digitalization in Diabetes Care in Germany. Journal of Diabetes Science and Technology, 2022, 16, 1521-1531.	2.2	2
11	Digital Diabetes Management: A Literature Review of Smart Insulin Pens. Journal of Diabetes Science and Technology, 2022, 16, 587-595.	2.2	35
12	Green Diabetes Summit 2021. Journal of Diabetes Science and Technology, 2022, 16, 233-247.	2.2	7
13	The Diabetes Technology Society Green Declaration. Journal of Diabetes Science and Technology, 2022, 16, 215-217.	2.2	4
14	More Green, Less Red: How Color Standardization May Facilitate Effective Use of CGM Data. Journal of Diabetes Science and Technology, 2022, 16, 3-6.	2.2	8
15	Feasibility of Wearable-Based Remote Monitoring in Patients During Intensive Treatment for Aggressive Hematologic Malignancies. JCO Clinical Cancer Informatics, 2022, 6, e2100126.	2.1	3
16	Improving the Patient Experience With Longer Wear Infusion Sets Symposium Report. Journal of Diabetes Science and Technology, 2022, 16, 775-782.	2.2	3
17	Treating an Unconscious Patient With Diabetes Wearing a Device Attached to Their Body. Journal of Diabetes Science and Technology, 2022, 16, 583-586.	2.2	1
18	Patch Pumps: What are the advantages for people with diabetes?. Diabetes Research and Clinical Practice, 2022, 187, 109858.	2.8	5

#	Article	IF	CITATIONS
19	Interferences With CGM Systems: Practical Relevance?. Journal of Diabetes Science and Technology, 2022, 16, 271-274.	2.2	9
20	Self-Monitoring of Blood Glucose as an Integral Part in the Management of People with Type 2 Diabetes Mellitus. Diabetes Therapy, 2022, 13, 829-846.	2.5	9
21	Patch Pumps: Periodic Insulin Delivery Patterns. Journal of Diabetes Science and Technology, 2022, , 193229682210918.	2.2	0
22	Real-Time Continuous Glucose Monitoring Can Predict Severe Hypoglycemia in People with Type 1 Diabetes: Combined Analysis of the HypoDE and DIAMOND Trials. Diabetes Technology and Therapeutics, 2022, 24, 603-610.	4.4	1
23	Insulin Pump Therapy for Patients With Type 2 Diabetes Mellitus: Evidence, Current Barriers, and New Technologies. Journal of Diabetes Science and Technology, 2021, 15, 193229682092810.	2.2	25
24	Noninvasive Continuous Monitoring of Vital Signs With Wearables: Fit for Medical Use?. Journal of Diabetes Science and Technology, 2021, 15, 34-43.	2.2	24
25	Intermittent Use of Continuous Glucose Monitoring: Expanding the Clinical Value of CGM. Journal of Diabetes Science and Technology, 2021, 15, 684-694.	2.2	10
26	Evaluation of the SPECTRUM training programme for realâ€time continuous glucose monitoring: A realâ€world multicentre prospective study in 120 adults with type 1 diabetes. Diabetic Medicine, 2021, 38, e14467.	2.3	19
27	Integrated personalized diabetes management goes Europe: A multi-disciplinary approach to innovating type 2 diabetes care in Europe. Primary Care Diabetes, 2021, 15, 360-364.	1.8	10
28	The Digital/Virtual Diabetes Clinic: The Future Is Nowâ€"Recommendations from an International Panel on Diabetes Digital Technologies Introduction. Diabetes Technology and Therapeutics, 2021, 23, 146-154.	4.4	79
29	Expenditure for the Development of a Medical Device: Much Higher Than Commonly Assumed. Journal of Diabetes Science and Technology, 2021, 15, 3-5.	2.2	1
30	What Do Healthcare Professionals and People With Diabetes Know About Insulin Transport and Storage? A Multinational Survey. Journal of Diabetes Science and Technology, 2021, 15, 719-722.	2.2	2
31	Response to the Comment by K. Hood to "Do It Yourself―(DIY)—Automated Insulin Delivery (AID) Systems: Current Status From a German Point of View. Journal of Diabetes Science and Technology, 2021, 15, 203-205.	2.2	2
32	Diabetes management intervention studies: lessons learned from two studies. Trials, 2021, 22, 61.	1.6	3
33	Advances in Insulin Pump Infusion Sets Symposium Report. Journal of Diabetes Science and Technology, 2021, 15, 705-709.	2.2	10
34	Diabetes Technology and Waste: A Complex Story. Journal of Diabetes Science and Technology, 2021, , 193229682110223.	2.2	3
35	Input of Patients for New Diabetes Technology Products. Journal of Diabetes Science and Technology, 2021, 15, 983-985.	2.2	2
36	Insulin Storage: A Critical Reappraisal. Journal of Diabetes Science and Technology, 2021, 15, 147-159.	2.2	48

3

#	Article	IF	CITATIONS
37	Bruising—An Ignored Issue?. Journal of Diabetes Science and Technology, 2021, , 193229682110650.	2.2	O
38	Benefits and Limitations of MARD as a Performance Parameter for Continuous Glucose Monitoring in the Interstitial Space. Journal of Diabetes Science and Technology, 2020, 14, 135-150.	2.2	72
39	Evaluating Glucose Control With a Novel Composite Continuous Glucose Monitoring Index. Journal of Diabetes Science and Technology, 2020, 14, 277-283.	2.2	20
40	Usage of Hydrocolloid-Based Plasters in Patients Who Have Developed Allergic Contact Dermatitis to Isobornyl Acrylate While Using Continuous Glucose Monitoring Systems. Journal of Diabetes Science and Technology, 2020, 14, 582-585.	2.2	15
41	Continuous Glucose Monitoring in People With Type 1 Diabetes on Multiple-Dose Injection Therapy: The Relationship Between Glycemic Control and Hypoglycemia. Diabetes Care, 2020, 43, 53-58.	8.6	18
42	Benefit of Digital Tools Used for Integrated Personalized Diabetes Management: Results From the PDM-ProValue Study Program. Journal of Diabetes Science and Technology, 2020, 14, 240-249.	2.2	15
43	Critical Reappraisal of the Time-in-Range: Alternative or Useful Addition to Glycated Hemoglobin?. Journal of Diabetes Science and Technology, 2020, 14, 922-927.	2.2	13
44	Journal of Diabetes Science and Technology: A Success Story!. Journal of Diabetes Science and Technology, 2020, 14, 835-836.	2.2	0
45	The implanted glucose monitoring system Eversense: An alternative for diabetes patients with isobornyl acrylate allergy. Contact Dermatitis, 2020, 82, 101-104.	1.4	27
46	Measurement Uncertainty Impacts Diagnosis of Diabetes Mellitus: Reliable Minimal Difference of Plasma Glucose Results. Diabetes Therapy, 2020, 11, 293-303.	2.5	22
47	Diabetes Digital App Technology: Benefits, Challenges, and Recommendations. A Consensus Report by the European Association for the Study of Diabetes (EASD) and the American Diabetes Association (ADA) Diabetes Technology Working Group. Diabetes Care, 2020, 43, 250-260.	8.6	175
48	"Do It Yourself―(DIY)—Automated Insulin Delivery (AID) Systems: Current Status From a German Point of View. Journal of Diabetes Science and Technology, 2020, 14, 1028-1034.	2.2	13
49	Continuous Glucose Monitors and Automated Insulin Dosing Systems in the Hospital Consensus Guideline. Journal of Diabetes Science and Technology, 2020, 14, 1035-1064.	2.2	77
50	Reliable Detection of Atrial Fibrillation with a Medical Wearable during Inpatient Conditions. Sensors, 2020, 20, 5517.	3.8	13
51	Preulcerous Risk Situation in Diabetic Foot Syndrome: Proposal for a Simple Ulcer Prevention Score. Journal of Diabetes Science and Technology, 2020, 15, 193229682092259.	2.2	4
52	Estimation of Hemoglobin A1c from Continuous Glucose Monitoring Data in Individuals with Type 1 Diabetes: Is Time In Range All We Need?. Diabetes Technology and Therapeutics, 2020, 22, 501-508.	4.4	35
53	Freestyle libre 2: The new isobornyl acrylate free generation. Contact Dermatitis, 2020, 83, 429-431.	1.4	22
54	The Diabetes Technology Society Green Diabetes Initiative. Journal of Diabetes Science and Technology, 2020, 14, 507-512.	2.2	16

#	Article	IF	CITATIONS
55	An Opportunity to Increase the Benefit of CGM Usage: The Need to Train the Patients Adequately. Journal of Diabetes Science and Technology, 2020, 14, 983-986.	2.2	11
56	Patch Pumps: Are They All the Same?. Journal of Diabetes Science and Technology, 2019, 13, 34-40.	2.2	25
57	Evaluation of Isobornyl Acrylate Content in Medical Devices for Diabetes Treatment. Diabetes Technology and Therapeutics, 2019, 21, 533-537.	4.4	32
58	Young Children Have Higher Variability of Insulin Requirements: Observations During Hybrid Closed-Loop Insulin Delivery. Diabetes Care, 2019, 42, 1344-1347.	8.6	51
59	Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care, 2019, 42, 1593-1603.	8.6	2,101
60	Diabetes Technology and Waste: A Complex Problem Piling Up!. Journal of Diabetes Science and Technology, 2019, 13, 815-816.	2.2	14
61	Storage Conditions of Insulin in Domestic Refrigerators and When Carried by Patients: Often Outside Recommended Temperature Range. Diabetes Technology and Therapeutics, 2019, 21, 238-244.	4.4	18
62	Impact of CGM on the Management of Hypoglycemia Problems: Overview and Secondary Analysis of the HypoDE Study. Journal of Diabetes Science and Technology, 2019, 13, 636-644.	2.2	35
63	Comment on Umpierrez and Klonoff. Diabetes Technology Update: Use of Insulin Pumps and Continuous Glucose Monitoring in the Hospital. Diabetes Care 2018;41:1579–1589. Diabetes Care, 2019, 42, e64-e65.	8.6	1
64	Elderly Patients With Diabetes: Special Aspects to Consider. Journal of Diabetes Science and Technology, 2019, 13, 611-613.	2.2	2
65	Open source automated insulin delivery: addressing the challenge. Npj Digital Medicine, 2019, 2, 124.	10.9	17
66	Response to Comment on Bergenstal et al. Glucose Management Indicator (GMI): A New Term for Estimating A1C From Continuous Glucose Monitoring. Diabetes Care 2018;41:2275–2280. Diabetes Care, 2019, 42, e29-e30.	8.6	3
67	Subcutaneous Insulin Administration: Sufficient Progress or Ongoing Need?. Journal of Diabetes Science and Technology, 2019, 13, 3-7.	2.2	9
68	The Effects and Effect Sizes of Real-Time Continuous Glucose Monitoring on Patient-Reported Outcomes: A Secondary Analysis of the HypoDE Study. Diabetes Technology and Therapeutics, 2019, 21, 86-93.	4.4	14
69	Concentrated insulins: History and critical reappraisal. Journal of Diabetes, 2019, 11, 292-300.	1.8	18
70	Artificial Pancreas Systems for People With Type 2 Diabetes: Conception and Design of the European CLOSE Project. Journal of Diabetes Science and Technology, 2019, 13, 261-267.	2.2	13
71	DiaDigital Apps: Evaluation of Smartphone Apps Using a Quality Rating Methodology for Use by Patients and Diabetologists in Germany. Journal of Diabetes Science and Technology, 2019, 13, 756-762.	2.2	7
72	Response to "Discrepancies Between Blood Glucose and Interstitial Glucoseâ€"Technological Artifacts or Physiology: A Replyâ€. Journal of Diabetes Science and Technology, 2018, 12, 900-902.	2.2	2

#	Article	IF	CITATIONS
73	Real-time continuous glucose monitoring in adults with type 1 diabetes and impaired hypoglycaemia awareness or severe hypoglycaemia treated with multiple daily insulin injections (HypoDE): a multicentre, randomised controlled trial. Lancet, The, 2018, 391, 1367-1377.	13.7	358
74	Insulin Concentration in Vials Randomly Purchased in Pharmacies in the United States: Considerable Loss in the Cold Supply Chain. Journal of Diabetes Science and Technology, 2018, 12, 839-841.	2.2	27
75	Inhaled Insulin: Dead Horse or Rising Phoenix?. Journal of Diabetes Science and Technology, 2018, 12, 239-242.	2.2	3
76	Blood Glucose Monitoring Data Should Be Reported in Detail When Studies About Efficacy of Continuous Glucose Monitoring Systems Are Published. Journal of Diabetes Science and Technology, 2018, 12, 1061-1063.	2.2	13
77	Further Evidence of Severe Allergic Contact Dermatitis From Isobornyl Acrylate While Using a Continuous Glucose Monitoring System. Journal of Diabetes Science and Technology, 2018, 12, 630-633.	2.2	68
78	Comparative Handling Analysis of Different Insulin Pump Systems. Journal of Diabetes Science and Technology, 2018, 12, 401-406.	2.2	1
79	Bolus Advisors: Sources of Error, Targets for Improvement. Journal of Diabetes Science and Technology, 2018, 12, 190-198.	2.2	22
80	Higher HbA1c Measurement Quality Standards are Needed for Follow-Up and Diagnosis: Experience and Analyses from Germany. Hormone and Metabolic Research, 2018, 50, 728-734.	1.5	14
81	Glucose Management Indicator (GMI): A New Term for Estimating A1C From Continuous Glucose Monitoring. Diabetes Care, 2018, 41, 2275-2280.	8.6	396
82	Integrated personalized diabetes management improves glycemic control in patients with insulin-treated type 2 diabetes: Results of the PDM-ProValue study program. Diabetes Research and Clinical Practice, 2018, 144, 200-212.	2.8	52
83	Lipohypertrophic Skin Changes in Patients With Diabetes: Visualization by Infrared Images. Journal of Diabetes Science and Technology, 2018, 12, 1152-1158.	2.2	2
84	Definition, Classification and Diagnosis of Diabetes Mellitus. Experimental and Clinical Endocrinology and Diabetes, 2018, 126, 406-410.	1.2	80
85	Practical Recommendations for Glucose Measurement, Glucose Monitoring and Glucose Control in Patients with Type 1 or Type 2 Diabetes in Germany. Experimental and Clinical Endocrinology and Diabetes, 2018, 126, 411-428.	1.2	7
86	Real-Time Continuous Glucose Monitoring Usage in Pilots with Diabetes: An Option to Improve Safety. Diabetes Technology and Therapeutics, 2018, 20, 453-454.	4.4	3
87	Modeling of Diabetes and Its Clinical Impact. Journal of Diabetes Science and Technology, 2018, 12, 976-984.	2.2	20
88	Limits to the Evaluation of the Accuracy of Continuous Glucose Monitoring Systems by Clinical Trials. Biosensors, 2018, 8, 50.	4.7	32
89	Open Source Closed-Loop Insulin Delivery Systems: A Clash of Cultures or Merging of Diverse Approaches?. Journal of Diabetes Science and Technology, 2018, 12, 1223-1226.	2.2	32
90	In Response to Letters to the Editor From the American Diabetes Association and Eli Lilly in Regard to: Insulin Concentration in Vials Randomly Purchased in Pharmacies in the United States: Considerable Loss in the Cold Supply Chain. Journal of Diabetes Science and Technology, 2018, 12, 1072-1077.	2.2	1

#	Article	IF	Citations
91	Self-measurement of Blood Glucose and Continuous Glucose Monitoring – Is There Only One Future?. European Endocrinology, 2018, 14, 24.	1.5	18
92	Boluses in Insulin Therapy. Journal of Diabetes Science and Technology, 2017, 11, 165-171.	2.2	11
93	Pharmacokinetic and Pharmacodynamic Properties of a Novel Inhaled Insulin. Journal of Diabetes Science and Technology, 2017, 11, 148-156.	2.2	48
94	Coverage of Prandial Insulin Requirements: An Elusive Goal. Diabetes Technology and Therapeutics, 2017, 19, 7-8.	4.4	4
95	Administration of Biosimilar Insulin Analogs: Role of Devices. Diabetes Technology and Therapeutics, 2017, 19, 79-84.	4.4	9
96	Bolus Calculator Safety Mandates a Need for Standards. Journal of Diabetes Science and Technology, 2017, 11, 3-6.	2.2	6
97	Insulin Pump Occlusions: For Patients Who Have Been Around the (Infusion) Block. Journal of Diabetes Science and Technology, 2017, 11, 451-454.	2.2	23
98	Closing the Loop in Adults, Children and Adolescents With Suboptimally Controlled Type 1 Diabetes Under Free Living Conditions: A Psychosocial Substudy. Journal of Diabetes Science and Technology, 2017, 11, 1080-1088.	2.2	99
99	Discrepancies Between Blood Glucose and Interstitial Glucose—Technological Artifacts or Physiology: Implications for Selection of the Appropriate Therapeutic Target. Journal of Diabetes Science and Technology, 2017, 11, 766-772.	2.2	59
100	Improving the Clinical Value and Utility of CGM Systems: Issues and Recommendations. Diabetes Care, 2017, 40, 1614-1621.	8.6	115
101	Replacement of Blood Glucose Measurements by Measurements With Systems for Real-Time Continuous Glucose Monitoring (rtCGM) or CGM With Intermittent Scanning (iscCGM): A German View. Journal of Diabetes Science and Technology, 2017, 11, 653-656.	2.2	4
102	Future of Diabetes Technology. Journal of Diabetes Science and Technology, 2017, 11, 863-869.	2.2	5
103	Will Biosimilar Insulins Be Cheaper?. Diabetes Technology and Therapeutics, 2017, 19, 513-515.	4.4	4
104	Continuous glucose monitoring: A training programme for all age groups. International Diabetes Nursing, 2017, 14, 26-31.	0.1	0
105	International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care, 2017, 40, 1631-1640.	8.6	1,376
106	Significance and Reliability of MARD for the Accuracy of CGM Systems. Journal of Diabetes Science and Technology, 2017, 11, 59-67.	2.2	80
107	SPECTRUM. Journal of Diabetes Science and Technology, 2017, 11, 284-289.	2.2	31
108	Pilots and Diabetes Technology. Journal of Diabetes Science and Technology, 2017, 11, 191-194.	2,2	2

#	Article	IF	CITATIONS
109	If PBMs Guard Access to Drugs, Then Quis Custodiet Ipsos Custodies? (Who Will Guard the) Tj ETQq1 1 0.7843	14 rgBT /O	verJock 10 Tf
110	Outcome Measures for Artificial Pancreas Clinical Trials: A Consensus Report. Diabetes Care, 2016, 39, 1175-1179.	8.6	195
111	Psychosocial Aspects of Continuous Glucose Monitoring. Journal of Diabetes Science and Technology, 2016, 10, 859-863.	2.2	29
112	Interferences and Limitations in Blood Glucose Self-Testing. Journal of Diabetes Science and Technology, 2016, 10, 1161-1168.	2.2	69
113	Comment on "The Performance and Usability of a Factory-Calibrated Flash Glucose Monitoring System―by Bailey et al Diabetes Technology and Therapeutics, 2016, 18, 334-335.	4.4	6
114	Adhesives Used for Diabetes Medical Devices. Journal of Diabetes Science and Technology, 2016, 10, 1211-1215.	2.2	63
115	A Comprehensive Performance Evaluation of Five Blood Glucose Systems in the Hypo-, Eu-, and Hyperglycemic Range. Journal of Diabetes Science and Technology, 2016, 10, 1316-1323.	2.2	5
116	Insulin Injection Into Lipohypertrophic Tissue: Blunted and More Variable Insulin Absorption and Action and Impaired Postprandial Glucose Control. Diabetes Care, 2016, 39, 1486-1492.	8.6	127
117	Usability of Medical Devices for Patients With Diabetes Who Are Visually Impaired or Blind. Journal of Diabetes Science and Technology, 2016, 10, 1382-1387.	2.2	18
118	Impact of symptomatic upper respiratory tract infections on insulin absorption and action of Technosphere inhaled insulin. BMJ Open Diabetes Research and Care, 2016, 4, e000228.	2.8	4
119	Integrated Personalized Diabetes Management (PDM). Journal of Diabetes Science and Technology, 2016, 10, 772-781.	2.2	15
120	Quality Control of Insulins and Biosimilar Insulins. Journal of Diabetes Science and Technology, 2016, 10, 811-815.	2.2	8
121	Reimbursement for Continuous Glucose Monitoring. Diabetes Technology and Therapeutics, 2016, 18, S2-48-S2-52.	4.4	43
122	AP@home. Journal of Diabetes Science and Technology, 2016, 10, 950-958.	2.2	8
123	Insulin Infusion Sets: A Critical Reappraisal. Diabetes Technology and Therapeutics, 2016, 18, 327-333.	4.4	20
124	Options for the Development of Noninvasive Glucose Monitoring. Journal of Diabetes Science and Technology, 2016, 10, 782-789.	2.2	8
125	Performance Comparison of CGM Systems. Journal of Diabetes Science and Technology, 2015, 9, 1030-1040.	2.2	35
126	An Overview of Current Regulatory Requirements for Approval of Biosimilar Insulins. Diabetes Technology and Therapeutics, 2015, 17, 510-526.	4.4	30

#	Article	IF	Citations
127	HypoDE. Journal of Diabetes Science and Technology, 2015, 9, 651-662.	2.2	17
128	How to Assess the Quality of Glucose Clamps? Evaluation of Clamps Performed With ClampArt, a Novel Automated Clamp Device. Journal of Diabetes Science and Technology, 2015, 9, 792-800.	2.2	48
129	Control Solutions for Blood Glucose Meters. Journal of Diabetes Science and Technology, 2015, 9, 723-724.	2.2	7
130	PsychDT Working Group. Journal of Diabetes Science and Technology, 2015, 9, 925-928.	2.2	13
131	CGM Versus FGM; or, Continuous Glucose Monitoring Is Not Flash Glucose Monitoring. Journal of Diabetes Science and Technology, 2015, 9, 947-950.	2.2	95
132	Insulin Pump and CGM Usage in the United States and Germany. Journal of Diabetes Science and Technology, 2015, 9, 1103-1110.	2.2	26
133	Patient-Reported Outcomes and Continuous Glucose Monitoring: Can We Do Better With Artificial Pancreas Devices?. Diabetes Care, 2015, 38, e70-e70.	8.6	10
134	Device Connectivity. Journal of Diabetes Science and Technology, 2015, 9, 701-705.	2.2	11
135	Quality of HbA1c Measurement in the Practice. Journal of Diabetes Science and Technology, 2015, 9, 687-695.	2.2	30
136	Analytical Performance Requirements for Systems for Self-Monitoring of Blood Glucose With Focus on System Accuracy. Journal of Diabetes Science and Technology, 2015, 9, 885-894.	2.2	51
137	Optimizing insulin pump therapy: the potential advantages of using a structured diabetes management program. Current Medical Research and Opinion, 2015, 31, 477-485.	1.9	14
138	Insulin Pump Risks and Benefits: A Clinical Appraisal of Pump Safety Standards, Adverse Event Reporting, and Research Needs. Diabetes Care, 2015, 38, 716-722.	8.6	95
139	Assessing Rates of Hypoglycemia as an End Point in Clinical Trials. Diabetes Care, 2015, 38, e160-e161.	8.6	5
140	Time Delay of CGM Sensors. Journal of Diabetes Science and Technology, 2015, 9, 1006-1015.	2.2	101
141	Performance of Blood Glucose Meters in the Low-Glucose Range: Current Evaluations Indicate That It Is Not Sufficient From a Clinical Point of View. Diabetes Care, 2015, 38, e139-e140.	8.6	49
142	Home Use of an Artificial Beta Cell in Type 1 Diabetes. New England Journal of Medicine, 2015, 373, 2129-2140.	27.0	397
143	We Need More Research and Better Designs for Insulin Infusion Sets. Journal of Diabetes Science and Technology, 2014, 8, 199-202.	2,2	17
144	Help! Someone Is Beeping Journal of Diabetes Science and Technology, 2014, 8, 627-629.	2.2	12

#	Article	IF	CITATIONS
145	Oral Insulin Reloaded. Journal of Diabetes Science and Technology, 2014, 8, 458-465.	2.2	59
146	Day and Night Home Closed-Loop Insulin Delivery in Adults With Type 1 Diabetes: Three-Center Randomized Crossover Study. Diabetes Care, 2014, 37, 1931-1937.	8.6	113
147	Confusion Regarding Duration of Insulin Action. Journal of Diabetes Science and Technology, 2014, 8, 170-178.	2.2	53
148	Assessing the effectiveness of 3 months day and night home closed-loop insulin delivery in adults with suboptimally controlled type 1 diabetes: a randomised crossover study protocol. BMJ Open, 2014, 4, e006075-e006075.	1.9	12
149	Impact of Biosimilar Insulins on Clinical Practice. Journal of Diabetes Science and Technology, 2014, 8, 179-185.	2.2	10
150	Lipohypertrophy and the Artificial Pancreas. Journal of Diabetes Science and Technology, 2014, 8, 915-917.	2.2	13
151	Glucose Measurement by Affinity Sensor and Pulsed Measurements of Fluidic Resistances. Journal of Diabetes Science and Technology, 2014, 8, 100-108.	2.2	5
152	EASD Diabetes Technology Meeting. Journal of Diabetes Science and Technology, 2014, 8, 900-903.	2.2	1
153	What Are the Next Steps in Continuous Glucose Monitoring?. Journal of Diabetes Science and Technology, 2014, 8, 397-402.	2.2	11
154	A randomised, controlled trial of self-monitoring of blood glucose in patients with type 2 diabetes receiving conventional insulin treatment. Diabetologia, 2014, 57, 868-877.	6.3	13
155	Biosimilar Insulins. Journal of Diabetes Science and Technology, 2014, 8, 6-13.	2.2	29
156	Current Trends in Continuous Glucose Monitoring. Journal of Diabetes Science and Technology, 2014, 8, 390-396.	2.2	25
157	Skin Autofluorescence – A Non-invasive Measurement for Assessing Cardiovascular Risk and Risk of Diabetes. European Endocrinology, 2014, 10, 106.	1.5	24
158	Freedom of Science - Can Industry Influence What Scientists Publish?. European Endocrinology, 2014, 10, 10-13.	1.5	0
159	Accuracy and Reliability of Continuous Glucose Monitoring Systems: A Head-to-Head Comparison. Diabetes Technology and Therapeutics, 2013, 15, 721-726.	4.4	70
160	Blood Glucose Meter Market: This World is Undergoing Drastic Changes. Journal of Diabetes Science and Technology, 2013, 7, 584-586.	2.2	5
161	Day and Night Closed-Loop Control in Adults With Type 1 Diabetes. Diabetes Care, 2013, 36, 3882-3887.	8.6	95
162	Real-Time Improvement of Continuous Glucose Monitoring Accuracy: The smart sensor concept. Diabetes Care, 2013, 36, 793-800.	8.6	86

#	Article	IF	CITATIONS
163	(Analytical) Accuracy of Blood Glucose Meters and Patients: How Do They Come Together?. Journal of Diabetes Science and Technology, 2013, 7, 1-3.	2.2	9
164	Patch Pump Versus Conventional Pump: Postprandial Glycemic Excursions and the Influence of Wear Time. Diabetes Technology and Therapeutics, 2013, 15, 575-579.	4.4	20
165	System Accuracy of Blood Glucose Monitoring Systems: Impact of Use by Patients and Ambient Conditions. Diabetes Technology and Therapeutics, 2013, 15, 889-896.	4.4	24
166	Continuous Glucose Monitoring: Evidence and Consensus Statement for Clinical Use. Journal of Diabetes Science and Technology, 2013, 7, 500-519.	2.2	67
167	Considerations for an Institution for Evaluation of Diabetes Technology Devices to Improve Their Quality in the European Union. Journal of Diabetes Science and Technology, 2013, 7, 542-547.	2.2	10
168	Freedom of Speech and Science: Can Companies Force Us to Withdraw Data They Don't Like?. Journal of Diabetes Science and Technology, 2013, 7, 1100-1101.	2.2	2
169	Biosimilar Insulin and Insulin Antibodies. Journal of Diabetes Science and Technology, 2013, 7, 806-807.	2.2	7
170	Assessing the Analytical Performance of Systems for Self-Monitoring of Blood Glucose: Concepts of Performance Evaluation and Definition of Metrological Key Terms. Journal of Diabetes Science and Technology, 2013, 7, 1585-1594.	2.2	16
171	The Systemic Immune Network in Recent Onset Type 1 Diabetes: Central Role of Interleukin-1 Receptor Antagonist (DIATOR Trial). PLoS ONE, 2013, 8, e72440.	2.5	11
172	The Diabetes Technologist: A Practical Solution in Dealing with Technology in Everyday Practice?. Journal of Diabetes Science and Technology, 2012, 6, 1240-1241.	2.2	2
173	Insulin Infusion Set: The Achilles Heel of Continuous Subcutaneous Insulin Infusion. Journal of Diabetes Science and Technology, 2012, 6, 954-964.	2.2	119
174	Prediction of the Risk to Develop Diabetes-Related Late Complications by Means of the Glucose Pentagon Model: Analysis of Data from the Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study. Journal of Diabetes Science and Technology, 2012, 6, 572-580.	2.2	9
175	Continuous Glucose Monitoring Accuracy Results Vary between Assessment at Home and Assessment at the Clinical Research Center. Journal of Diabetes Science and Technology, 2012, 6, 1103-1106.	2.2	24
176	Ultrafast-Acting Insulins: State of the Art. Journal of Diabetes Science and Technology, 2012, 6, 728-742.	2.2	82
177	Future of Diabetes-Technology: Certificate of Competency for Insulin Pumps and Continuous Glucose Monitors. Journal of Diabetes Science and Technology, 2012, 6, 725-727.	2.2	4
178	Journal of Diabetes Science and Technology: Evolution of an Electronic Journal. Journal of Diabetes Science and Technology, 2012, 6, 226-228.	2.2	0
179	Accuracy in Blood Glucose Measurement: What Will a Tightening of Requirements Yield?. Journal of Diabetes Science and Technology, 2012, 6, 435-443.	2.2	19
180	Reimbursement for Continuous Glucose Monitoring: A European View. Journal of Diabetes Science and Technology, 2012, 6, 1498-1502.	2.2	42

#	Article	IF	CITATIONS
181	Biosimilar Insulins: How Will This Story Evolve?. Diabetes Technology and Therapeutics, 2012, 14, 986-988.	4.4	6
182	Biosimilar insulins. Expert Opinion on Biological Therapy, 2012, 12, 1009-1016.	3.1	20
183	Improved Preservation of Residual Beta Cell Function by Atorvastatin in Patients with Recent Onset Type 1 Diabetes and High CRP Levels (DIATOR Trial). PLoS ONE, 2012, 7, e33108.	2.5	23
184	A 4-h hyperglycaemic excursion induces rapid and slow changes in major electrolytes in blood in healthy human subjects. Acta Diabetologica, 2012, 49, 333-339.	2.5	1
185	Residual Beta Cell Function in Newly Diagnosed Type 1 Diabetes after Treatment with Atorvastatin: The Randomized DIATOR Trial. PLoS ONE, 2011, 6, e17554.	2.5	23
186	Intradermal Microneedle Delivery of Insulin Lispro Achieves Faster Insulin Absorption and Insulin Action than Subcutaneous Injection. Diabetes Technology and Therapeutics, 2011, 13, 435-442.	4.4	64
187	Reduction of Postprandial Glycemic Excursions in Patients with Type 1 Diabetes: A Novel Human Insulin Formulation versus a Rapid-Acting Insulin Analog and Regular Human Insulin. Journal of Diabetes Science and Technology, 2011, 5, 681-686.	2.2	24
188	Consensus Report: The Current Role of Self-Monitoring of Blood Glucose in Non-Insulin-Treated Type 2 Diabetes. Journal of Diabetes Science and Technology, 2011, 5, 1529-1548.	2.2	88
189	Lancing: <i>Quo Vadis?</i> . Journal of Diabetes Science and Technology, 2011, 5, 966-981.	2.2	22
190	AP@home: A Novel European Approach to Bring the Artificial Pancreas Home. Journal of Diabetes Science and Technology, 2011, 5, 1363-1372.	2.2	35
191	Subcutaneous Injection versus Subcutaneous Infusion of Insulin: Are the Rates of Absorption Truly the Same?. Journal of Diabetes Science and Technology, 2011, 5, 1027-1029.	2.2	7
192	Biosimilar Insulins: How Similar is Similar?. Journal of Diabetes Science and Technology, 2011, 5, 741-754.	2.2	30
193	Microneedle-Based Intradermal Versus Subcutaneous Administration of Regular Human Insulin or Insulin Lispro: Pharmacokinetics and Postprandial Glycemic Excursions in Patients with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2011, 13, 443-450.	4.4	58
194	Quality of Glucose Measurement with Blood Glucose Meters at the Point-of-Care: Relevance of Interfering Factors. Diabetes Technology and Therapeutics, 2010, 12, 847-857.	4.4	56
195	First-Phase Insulin Secretion Has Limited Impact on Postprandial Glycemia in Subjects with Type 2 Diabetes: Correlations Between Hyperglycemic Glucose Clamp and Meal Test. Diabetes Technology and Therapeutics, 2010, 12, 117-123.	4.4	3
196	Nonlinear Metabolic Effect of Insulin Across the Blood Glucose Range in Patients with Type 1 Diabetes Mellitus. Journal of Diabetes Science and Technology, 2010, 4, 873-881.	2.2	8
197	Analysis of the Nova Stat Strip® Glucose Meter for Real-Time Blood Glucose Determinations during Glucose Clamp Studies: "Don't Swap Horses in Midstream― Journal of Diabetes Science and Technology, 2010, 4, 1202-1204.	2.2	1
198	Insulin Absorption from Lipodystrophic Areas: A (Neglected) Source of Trouble for Insulin Therapy?. Journal of Diabetes Science and Technology, 2010, 4, 750-753.	2.2	45

#	Article	IF	Citations
199	Continuous Glucose Monitoring during Exercise in Patients with Type 1 Diabetes on Continuous Subcutaneous Insulin Infusion. Journal of Diabetes Science and Technology, 2010, 4, 123-131.	2.2	27
200	Oral Insulin: A Comparison With Subcutaneous Regular Human Insulin in Patients With Type 2 Diabetes. Diabetes Care, 2010, 33, 1288-1290.	8.6	57
201	Trust: Need for an Improved Communication between the Public World and the Pharmaceutical Companies. Journal of Diabetes Science and Technology, 2009, 3, 210-212.	2.2	2
202	Changes in Basal Insulin Infusion Rates With Subcutaneous Insulin Infusion. Diabetes Care, 2009, 32, 1437-1439.	8.6	46
203	Continuous Glucose Monitoring and Clinical Trials. Journal of Diabetes Science and Technology, 2009, 3, 981-985.	2.2	13
204	Insulin Pump Therapy: What is the Evidence for Using Different Types of Boluses for Coverage of Prandial Insulin Requirements?. Journal of Diabetes Science and Technology, 2009, 3, 1490-1500.	2.2	37
205	Biphasic Insulin Aspart 30/70: Pharmacokinetics and Pharmacodynamics Compared With Once-Daily Biphasic Human Insulin and Basal-Bolus Therapy. Diabetes Care, 2009, 32, 1431-1433.	8.6	31
206	Are Type 2 Diabetes Patients Who Self-Monitor Blood Glucose Special? The Role of Confounders in the Observational ROSSO Study. Journal of Diabetes Science and Technology, 2009, 3, 1507-1515.	2.2	2
207	Non-invasive glucose monitoring in patients with Type 1 diabetes: A Multisensor system combining sensors for dielectric and optical characterisation of skin. Biosensors and Bioelectronics, 2009, 24, 2778-2784.	10.1	93
208	Effect of the urotensinâ€II receptor antagonist palosuran on secretion of and sensitivity to insulin in patients with Type 2 diabetes mellitus. British Journal of Clinical Pharmacology, 2009, 68, 502-510.	2.4	22
209	Glycemic Exposure Is Affected Favorably by Inhaled Human Insulin (Exubera) as Compared with Subcutaneous Insulin Glargine (Lantus) in Patients with Type 2 Diabetes. Diabetes Technology and Therapeutics, 2009, 11, 307-313.	4.4	5
210	The "Glucose Pentagon― Assessing Glycemic Control of Patients with Diabetes Mellitus by a Model Integrating Different Parameters from Glucose Profiles. Diabetes Technology and Therapeutics, 2009, 11, 399-409.	4.4	30
211	Myocardial Infarction and Stroke in Early Years After Diagnosis of Type 2 Diabetes: Risk Factors and Relation to Self-Monitoring of Blood Glucose. Diabetes Technology and Therapeutics, 2009, 11, 234-241.	4.4	15
212	Oral Insulin and Buccal Insulin: A Critical Reappraisal. Journal of Diabetes Science and Technology, 2009, 3, 568-584.	2.2	123
213	Comparison of the Numerical and Clinical Accuracy of Four Continuous Glucose Monitors. Diabetes Care, 2008, 31, 1160-1164.	8.6	755
214	Variability of Insulin Action: Does It Matter?. Insulin, 2008, 3, 37-45.	0.2	17
215	Intra-Individual Variability of the Metabolic Effect of a Novel Rapid-Acting Insulin (VIAjectâ,,¢) in Comparison to Regular Human Insulin. Journal of Diabetes Science and Technology, 2008, 2, 568-571.	2.2	31
216	Insulin Analogues: A Critical View on Their Future. Journal of Diabetes Science and Technology, 2008, 2, 164-168.	2.2	1

#	Article	IF	Citations
217	Role of Physicians in the Pharmaceutical Industry and Clinical Research Organizations: Take More Pride in Your Work. Journal of Diabetes Science and Technology, 2008, 2, 707-709.	2.2	5
218	The Failure of Exubera: Are We Beating a Dead Horse?. Journal of Diabetes Science and Technology, 2008, 2, 518-529.	2.2	98
219	Further Development of Artificial Pancreas: Blocked by Patents?. Journal of Diabetes Science and Technology, 2008, 2, 971-976.	2.2	4
220	Inhaled Insulin: Take a Deep Breath, but How?. Journal of Diabetes Science and Technology, 2008, 2, 297-299.	2.2	3
221	Finger Pricking and Pain: A Never Ending Story. Journal of Diabetes Science and Technology, 2008, 2, 919-921.	2.2	107
222	Diabetologists' and Patients' Views on Continuous Glucose Monitoring: Do They Talk about the Same Story?. Journal of Diabetes Science and Technology, 2008, 2, 113-115.	2.2	0
223	Inhaled Technosphere® Insulin in Comparison to Subcutaneous Regular Human Insulin: Time Action Profile and Variability in Subjects with Type 2 Diabetes. Journal of Diabetes Science and Technology, 2008, 2, 205-212.	2.2	45
224	Basalâ€"Prandial Insulin Delivery in Type 2 Diabetes Mellitus via the V-Goâ,,¢: A Novel Continuous Subcutaneous Infusion Device. Journal of Diabetes Science and Technology, 2008, 2, 40-46.	2.2	17
225	Type 2 Diabetes Phenotype and Progression is Significantly Different if Diagnosed before versus after 65 Years of Age. Journal of Diabetes Science and Technology, 2008, 2, 82-90.	2.2	15
226	Are All Clinical Studies Sponsored by Industry Not Valid?. Journal of Diabetes Science and Technology, 2008, 2, 1161-1163.	2.2	3
227	Parameters Affecting Postprandial Blood Glucose: Effects of Blood Glucose Measurement Errors. Journal of Diabetes Science and Technology, 2008, 2, 58-66.	2.2	8
228	Measuring Glucose Concentrations: Daily Practice, Current and Future Developments. Journal of Diabetes Science and Technology, 2008, 2, 710-717.	2.2	8
229	AIR Inhaled Insulin in Subjects With Chronic Obstructive Pulmonary Disease: Pharmacokinetics, glucodynamics, safety, and tolerability. Diabetes Care, 2007, 30, 1777-1782.	8.6	33
230	Journal of Diabetes Science and Technology and the Diabetes Technology Community. Journal of Diabetes Science and Technology, 2007, 1 , 1 -2.	2.2	1
231	Self-Monitoring of Blood Glucose in Noninsulin-Treated Patients with Type 2 Diabetes: A Never Ending Story?. Journal of Diabetes Science and Technology, 2007, 1, 614-616.	2.2	6
232	Interrelations between Diabetes Therapy, Self-Monitoring of Blood Glucose, Blood Glucose and Non-fatal or Fatal Endpoints in Patients with Type 2 Diabetes. Arzneimittelforschung, 2007, 57, 762-769.	0.4	9
233	Altered Disease Course after Initiation of Self-Monitoring of Blood Glucose in Noninsulin-Treated Type 2 Diabetes (ROSSO 3). Journal of Diabetes Science and Technology, 2007, 1, 487-495.	2.2	10
234	Measurement Quality of Blood Glucose Meters: Is There a Need for an Institution with an Unbiased View?. Journal of Diabetes Science and Technology, 2007, 1, 178-180.	2.2	5

#	Article	IF	Citations
235	Continuous Subcutaneous Glucose Monitoring Shows a Close Correlation between Mean Glucose and Time Spent in Hyperglycemia and Hemoglobin A1c. Journal of Diabetes Science and Technology, 2007, 1, 857-863.	2.2	14
236	Noninvasive Glucose Monitoring Systems: Will We Ever Have Such Sensors for Practical Use?. Journal of Diabetes Science and Technology, 2007, 1, 936-939.	2.2	5
237	Dose-Response Relationship of Insulin Glulisine in Subjects With Type 1 Diabetes. Diabetes Care, 2007, 30, 2506-2507.	8.6	41
238	Future Directions in Insulin Therapy and Treatment of Diabetes Mellitus: A Critical Comment. Clinical Cornerstone, 2007, 8, 66-74.	0.7	1
239	Clinical development of continuous glucose monitoring systems: considerations for the optimal strategy. Diabetes Research and Clinical Practice, 2006, 74, S82-S92.	2.8	7
240	Time-Action Profile of Inhaled Insulin in Comparison With Subcutaneously Injected Insulin Lispro and Regular Human Insulin. Diabetes Care, 2005, 28, 1077-1082.	8.6	154
241	Enhancement of blood glucose lowering effect of a sulfonylurea when coadministered with an ACE inhibitor: results of a glucose-clamp study. Diabetes/Metabolism Research and Reviews, 2005, 21, 459-464.	4.0	12
242	Dose Response of Inhaled Dry-Powder Insulin and Dose Equivalence to Subcutaneous Insulin Lispro. Diabetes Care, 2005, 28, 2400-2405.	8.6	67
243	Lower Within-Subject Variability of Insulin Detemir in Comparison to NPH Insulin and Insulin Glargine in People With Type 1 Diabetes. Diabetes, 2004, 53, 1614-1620.	0.6	570
244	Measurement of Insulin Absorption and Insulin Action. Diabetes Technology and Therapeutics, 2004, 6, 698-718.	4.4	49
245	Review: Current status of the development of inhaled insulin. British Journal of Diabetes and Vascular Disease, 2004, 4, 295-301.	0.6	41
246	Impact of Particle Size and Aerosolization Time on the Metabolic Effect of an Inhaled Insulin Aerosol. Diabetes Technology and Therapeutics, 2004, 6, 119-127.	4.4	11
247	Correlation Between Anthropometric Parameters and Abdominal Fat Volumes Assessed by a Magnetic Resonance Imaging Method in Patients with Diabetes. Diabetes Technology and Therapeutics, 2004, 6, 844-849.	4.4	12
248	Effect of pramlintide on symptom, catecholamine, and glucagon responses to hypoglycemia in healthy subjects. Metabolism: Clinical and Experimental, 2004, 53, 1227-1232.	3.4	22
249	A rapid and reliable semiautomated method for measurement of total abdominal fat volumes using magnetic resonance imaging. Magnetic Resonance Imaging, 2003, 21, 631-636.	1.8	19
250	Continuous Glucose Monitoring by Means of the Microdialysis Technique: Underlying Fundamental Aspects. Diabetes Technology and Therapeutics, 2003, 5, 545-561.	4.4	56
251	Continuous Glucose Monitoring: Reliable Measurements for up to 4 Days with the SCGM1 System. Diabetes Technology and Therapeutics, 2003, 5, 609-614.	4.4	25
252	Hypoglycemia Warning Signal and Glucose Sensors: Requirements and Concepts. Diabetes Technology and Therapeutics, 2003, 5, 563-571.	4.4	23

#	Article	IF	Citations
253	Continuous Glucose Monitoring with Glucose Sensors: Calibration and Assessment Criteria. Diabetes Technology and Therapeutics, 2003, 5, 572-586.	4.4	57
254	Glucose Sensors and the Alternate Site Testing-Like Phenomenon: Relationship Between Rapid Blood Glucose Changes and Glucose Sensor Signals. Diabetes Technology and Therapeutics, 2003, 5, 829-842.	4.4	52
255	Absorption and Metabolic Effect of Inhaled Insulin: Intrapatient variability after inhalation via the Aerodose Insulin Inhaler in patients with type 2 diabetes. Diabetes Care, 2002, 25, 2276-2281.	8.6	63
256	Effect of C-Peptide on Glucose Metabolism in Patients With Type 1 Diabetes. Diabetes Care, 2002, 25, 1096-1097.	8.6	9
257	Variability of Insulin Absorption and Insulin Action. Diabetes Technology and Therapeutics, 2002, 4, 673-682.	4.4	216
258	Analysis: Chronic Intermittent Intravenous Insulin Therapy: Really a New Therapeutic Option?. Diabetes Technology and Therapeutics, 2001, 3, 125-127.	4.4	0
259	Rapid and Long-Acting Analogues as an Approach to Improve Insulin Therapy: An Evidence-Based Medicine Assessment. Current Pharmaceutical Design, 2001, 7, 1303-1325.	1.9	44
260	Alternative Routes of Administration as an Approach to Improve Insulin Therapy: Update on Dermal, Oral, Nasal and Pulmonary Insulin Delivery. Current Pharmaceutical Design, 2001, 7, 1327-1351.	1.9	104
261	A cross-over evaluation of different methods and devices to measure blood pressure in type 1 diabetic patients with nephropathy. Blood Pressure Monitoring, 2000, 5 , $175-180$.	0.8	9
262	Noninvasive Glucose Measurement by Monitoring of Scattering Coefficient During Oral Glucose Tolerance Tests. Diabetes Technology and Therapeutics, 2000, 2, 211-220.	4.4	33
263	Hypoglycemia and Insulin Analogues:. Journal of Diabetes and Its Complications, 1999, 13, 105-114.	2.3	31
264	Injection-meal interval: recommendations of diabetologists and how patients handle it. Diabetes Research and Clinical Practice, 1999, 43, 137-142.	2.8	83
265	Simulated postaggression metabolism in healthy subjects: Metabolic changes and insulin resistance. Metabolism: Clinical and Experimental, 1998, 47, 1263-1268.	3.4	19
266	Insulin Resistance and the Effect of Insulin on Blood Pressure in Essential Hypertension. Hypertension, 1998, 32, 243-248.	2.7	66
267	Fitting nonlinear regression models with correlated errors to individual pharmacodynamic data using SAS software. Journal of Pharmacokinetics and Pharmacodynamics, 1995, 23, 87-100.	0.6	12
268	Beneficial effects of a hypertension and treatment programme in blind type I diabetic patients with overt nephropathy. Patient Education and Counseling, 1994, 23, S68-S69.	2.2	0
269	Near-normotension and near-normoglycemia in blind Type I diabetic patients with overt diabetic nephropathy. The Journal of Diabetic Complications, 1990, 4, 179-183.	0.2	10
270	Atrial natriuretic factor in various stages of diabetic nephropathy. The Journal of Diabetic Complications, 1988, 2, 207-209.	0.2	17

#	Article	IF	CITATIONS
271	Air Bubbles in Insulin Pumps: A Clinically Relevant Issue?. Journal of Diabetes Science and Technology, 0, , 193229682211018.	2.2	1