Snorri Sigurdsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8374231/publications.pdf Version: 2024-02-01

	57758	102487
5,410	44	66
citations	h-index	g-index
153	153	3349
docs citations	times ranked	citing authors
	citations 153	5,41044citationsh-index153153

#	Article	IF	CITATIONS
1	Highly Efficient Polarizing Agents for MASâ€DNP of Protonâ€Dense Molecular Solids. Angewandte Chemie - International Edition, 2022, 61, .	13.8	30
2	The distance between g-tensors of nitroxide biradicals governs MAS-DNP performance: The case of the bTurea family. Journal of Magnetic Resonance, 2021, 329, 107026.	2.1	11
3	A Carbazole-Derived Nitroxide That Is an Analogue of Cytidine: A Rigid Spin Label for DNA and RNA. Journal of Organic Chemistry, 2021, 86, 11647-11659.	3.2	4
4	Noncovalent Spin‣abeling of DNA and RNA Triplexes. Chemistry and Biodiversity, 2020, 17, e1900676.	2.1	3
5	Water-soluble BDPA radicals with improved persistence. Chemical Communications, 2020, 56, 13121-13124.	4.1	12
6	Compaction of RNA Duplexes in the Cell**. Angewandte Chemie - International Edition, 2020, 59, 23025-23029.	13.8	28
7	Compaction of RNA Duplexes in the Cell**. Angewandte Chemie, 2020, 132, 23225-23229.	2.0	5
8	On the Limited Stability of BDPA Radicals. Chemistry - A European Journal, 2020, 26, 7486-7491.	3.3	10
9	High-resolution EPR distance measurements on RNA and DNA with the non-covalent Ç´spin label. Nucleic Acids Research, 2020, 48, 924-933.	14.5	23
10	Reduction Resistant and Rigid Nitroxide Spin-Labels for DNA and RNA. Journal of Organic Chemistry, 2020, 85, 4036-4046.	3.2	10
11	Dynamic Nuclear Polarization with Electron Decoupling in Intact Human Cells and Cell Lysates. Journal of Physical Chemistry B, 2020, 124, 2323-2330.	2.6	16
12	Characterization of frequency-chirped dynamic nuclear polarization in rotating solids. Journal of Magnetic Resonance, 2020, 313, 106702.	2.1	8
13	Nitroxideâ€Derived N â€Oxide Phenazines for Noncovalent Spin‣abeling of DNA. ChemBioChem, 2020, 21, 2635-2642.	2.6	4
14	Paramagnetic-iterative relaxation matrix approach: extracting PRE-restraints from NOESY spectra for 3D structure elucidation of biomolecules. Journal of Biomolecular NMR, 2019, 73, 699-712.	2.8	9
15	Frequency-chirped dynamic nuclear polarization with magic angle spinning using a frequency-agile gyrotron. Journal of Magnetic Resonance, 2019, 308, 106586.	2.1	18
16	Benzoylâ€Protected Hydroxylamines for Improved Chemical Synthesis of Oligonucleotides Containing Nitroxide Spin Labels. European Journal of Organic Chemistry, 2019, 2019, 3799-3805.	2.4	8
17	Sensitivity analysis of magic angle spinning dynamic nuclear polarization below 6â€⁻K. Journal of Magnetic Resonance, 2019, 305, 51-57.	2.1	7
18	Influence of Mg ²⁺ on the conformational flexibility of a tetracycline aptamer. Rna, 2019, 25, 158-167.	3.5	24

#	Article	IF	CITATIONS
19	Structure guided fluorescence labeling reveals a two-step binding mechanism of neomycin to its RNA aptamer. Nucleic Acids Research, 2019, 47, 15-28.	14.5	21
20	Purineâ€Derived Nitroxides for Noncovalent Spin‣abeling of Abasic Sites in Duplex Nucleic Acids. Chemistry - A European Journal, 2018, 24, 4157-4164.	3.3	12
21	Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization. Journal of Magnetic Resonance, 2018, 289, 45-54.	2.1	47
22	Structure and Dynamics of Nucleic Acid Molecules Studied by Pulsed EPR. Biophysical Journal, 2018, 114, 29a.	0.5	0
23	A semi-rigid isoindoline-derived nitroxide spin label for RNA. Organic and Biomolecular Chemistry, 2018, 16, 816-824.	2.8	18
24	Noncovalent spin-labeling of RNA: the aptamer approach. Chemical Communications, 2018, 54, 11749-11752.	4.1	12
25	Orientation Selective 2D-SIFTER Experiments at X-Band Frequencies. Applied Magnetic Resonance, 2018, 49, 1355-1368.	1.2	9
26	Efficiency of Waterâ€Soluble Nitroxide Biradicals for Dynamic Nuclear Polarization in Rotating Solids at 9.4â€T: bcTolâ€M and cyolylâ€TOTAPOL as New Polarizing Agents. Chemistry - A European Journal, 2018, 24, 13485-13494.	, 3.3	37
27	Dynamics of Nucleic Acids at Room Temperature Revealed by Pulsed EPR Spectroscopy. Angewandte Chemie - International Edition, 2018, 57, 10540-10543.	13.8	15
28	Computationally Assisted Design of Polarizing Agents for Dynamic Nuclear Polarization Enhanced NMR: The AsymPol Family. Journal of the American Chemical Society, 2018, 140, 11013-11019.	13.7	92
29	Dynamics of Nucleic Acids at Room Temperature Revealed by Pulsed EPR Spectroscopy. Angewandte Chemie, 2018, 130, 10700-10703.	2.0	4
30	Dynamic Nuclear Polarization Nuclear Magnetic Resonance in Human Cells Using Fluorescent Polarizing Agents. Biochemistry, 2018, 57, 4741-4746.	2.5	58
31	Impact of spin label rigidity on extent and accuracy of distance information from PRE data. Journal of Biomolecular NMR, 2017, 68, 53-63.	2.8	11
32	Determination of helix orientations in a flexible DNA by multi-frequency EPR spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 29801-29811.	2.8	18
33	Characterization of V–Mo–W Mixed Oxide Catalyst Surface Species by ⁵¹ V Solid-State Dynamic Nuclear Polarization NMR. Journal of Physical Chemistry C, 2017, 121, 20857-20864.	3.1	12
34	Spin the light off: rapid internal conversion into a dark doublet state quenches the fluorescence of an RNA spin label. Physical Chemistry Chemical Physics, 2017, 19, 26255-26264.	2.8	8
35	Noncovalent and site-directed spin labeling of duplex RNA. Chemical Communications, 2016, 52, 14442-14445.	4.1	17
36	Dynamic Nuclear Polarization Provides New Insights into Chromophore Structure in Phytochrome Photoreceptors. Angewandte Chemie, 2016, 128, 16251-16254.	2.0	2

#	Article	IF	CITATIONS
37	Flexibilities of isoindoline-derived spin labels for nucleic acids by orientation selective PELDOR. Physical Chemistry Chemical Physics, 2016, 18, 16196-16201.	2.8	15
38	Site-Directed Spin Labeling for EPR Studies of Nucleic Acids. Nucleic Acids and Molecular Biology, 2016, , 159-187.	0.2	15
39	Dynamic Nuclear Polarization Provides New Insights into Chromophore Structure in Phytochrome Photoreceptors. Angewandte Chemie - International Edition, 2016, 55, 16017-16020.	13.8	22
40	Quantitative UPLC–MS/MS assay of urinary 2,8-dihydroxyadenine for diagnosis and management of adenine phosphoribosyltransferase deficiency. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1036-1037, 170-177.	2.3	12
41	bcTol: a highly water-soluble biradical for efficient dynamic nuclear polarization of biomolecules. Chemical Communications, 2016, 52, 7020-7023.	4.1	49
42	Flexibility and conformation of the cocaine aptamer studied by PELDOR. Physical Chemistry Chemical Physics, 2016, 18, 2993-3002.	2.8	38
43	TEMPO-derived spin labels linked to the nucleobases adenine and cytosine for probing local structural perturbations in DNA by EPR spectroscopy. Beilstein Journal of Organic Chemistry, 2015, 11, 219-227.	2.2	12
44	Site-Directed Spin Labeling of RNA by Postsynthetic Modification of 2′-Amino Groups. Methods in Enzymology, 2015, 563, 397-414.	1.0	6
45	Natural Abundance ¹⁵ Nâ€NMR by Dynamic Nuclear Polarization: Fast Analysis of Binding Sites of a Novel Amine arboxyl‣inked Immobilized Dirhodium Catalyst. Chemistry - A European Journal, 2015, 21, 3798-3805.	3.3	59
46	Distance measurements between manganese(<scp>ii</scp>) and nitroxide spin-labels by DEER determine a binding site of Mn ²⁺ in the HP92 loop of ribosomal RNA. Physical Chemistry Chemical Physics, 2015, 17, 15098-15102.	2.8	26
47	Advanced EPR Methods for Studying Conformational Dynamics of Nucleic Acids. Methods in Enzymology, 2015, 564, 403-425.	1.0	27
48	Conformational dynamics of nucleic acid molecules studied by PELDOR spectroscopy with rigid spin labels. Journal of Magnetic Resonance, 2015, 252, 187-198.	2.1	52
49	Site-directed spin labeling of 2′-amino groups in RNA with isoindoline nitroxides that are resistant to reduction. Chemical Communications, 2015, 51, 13142-13145.	4.1	37
50	Pulsed EPR dipolar spectroscopy at Q- and G-band on a trityl biradical. Physical Chemistry Chemical Physics, 2015, 17, 24446-24451.	2.8	43
51	Sterically shielded spin labels for in-cell EPR spectroscopy: Analysis of stability in reducing environment. Free Radical Research, 2015, 49, 78-85.	3.3	131
52	TMIO-PyrImid Hybrids are Profluorescent, Site-Directed Spin Labels for Nucleic Acids. Organic Letters, 2014, 16, 5528-5531.	4.6	27
53	Conformationally Restricted Isoindolineâ€Derived Spin Labels in Duplex DNA: Distances and Rotational Flexibility by Pulsed Electron–Electron Double Resonance Spectroscopy. Chemistry - A European Journal, 2014, 20, 15913-15919.	3.3	27
54	Nitroxide-labeled pyrimidines for non-covalent spin-labeling of abasic sites in DNA and RNA duplexes. Organic and Biomolecular Chemistry, 2014, 12, 7366-7374.	2.8	26

#	Article	IF	CITATIONS
55	Measurements of short distances between trityl spin labels with CW EPR, DQC and PELDOR. Physical Chemistry Chemical Physics, 2013, 15, 19673.	2.8	59
56	Syntheses and photophysical properties of 5′–6-locked fluorescent nucleosides. Organic and Biomolecular Chemistry, 2013, 11, 149-157.	2.8	3
57	Rigid 5â€2-6-locked phenanthroline-derived nucleosides chelated to ruthenium and europium ions. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 264-267.	2.2	5
58	Hydrogen-bonding controlled rigidity of an isoindoline-derived nitroxide spin label for nucleic acids. Chemical Communications, 2013, 49, 999-1001.	4.1	30
59	Orientation selection in distance measurements between nitroxide spin labels at 94 GHz EPR with variable dual frequency irradiation. Physical Chemistry Chemical Physics, 2013, 15, 3433.	2.8	58
60	Protein-induced changes in DNA structure and dynamics observed with noncovalent site-directed spin labeling and PELDOR. Nucleic Acids Research, 2013, 41, e11-e11.	14.5	29
61	A Singleâ€5tranded Junction Modulates Nanosecond Motional Ordering of the Substrate Recognition Duplex of a Group I Ribozyme. ChemBioChem, 2013, 14, 1720-1723.	2.6	10
62	Structural changes of an abasic site in duplex DNA affect noncovalent binding of the spin label ç. Nucleic Acids Research, 2012, 40, 3732-3740.	14.5	20
63	Synthesis and Characterization of RNA Containing a Rigid and Nonperturbing Cytidine-Derived Spin Label. Journal of Organic Chemistry, 2012, 77, 7749-7754.	3.2	61
64	Conformation and dynamics of nucleotides in bulges and symmetric internal loops in duplex DNA studied by EPR and fluorescence spectroscopies. Biochemical and Biophysical Research Communications, 2012, 420, 656-661.	2.1	13
65	Trityl Radicals: Spin Labels for Nanometerâ€Distance Measurements. Chemistry - A European Journal, 2012, 18, 13580-13584.	3.3	116
66	Siteâ€Directed Spin Labelling of Nucleic Acids. European Journal of Organic Chemistry, 2012, 2012, 2291-2301.	2.4	81
67	Effect of N3 Modifications on the Affinity of Spin Label ç for Abasic Sites in Duplex DNA. ChemBioChem, 2012, 13, 684-690.	2.6	9
68	Mass Spectrometric Study on Sodium Ion Induced Central Nucleotide Deletion in the Gas Phase. Journal of the American Society for Mass Spectrometry, 2012, 23, 690-698.	2.8	3
69	W-band PELDOR with 1 kW microwave power: Molecular geometry, flexibility and exchange coupling. Journal of Magnetic Resonance, 2012, 216, 175-182.	2.1	54
70	Simulating electron spin resonance spectra of macromolecules labeled with two dipolar-coupled nitroxide spin labels from trajectories. Physical Chemistry Chemical Physics, 2011, 13, 12785.	2.8	4
71	Experimental and theoretical study of the metastable decay of negatively charged nucleosides in the gas phase. Physical Chemistry Chemical Physics, 2011, 13, 15283.	2.8	19
72	Conformational Flexibility of DNA. Journal of the American Chemical Society, 2011, 133, 13375-13379.	13.7	107

#	Article	IF	CITATIONS
73	Structure–Function Relationships of Phenoxazine Nucleosides for Identification of Mismatches in Duplex DNA by Fluorescence Spectroscopy. ChemBioChem, 2011, 12, 567-575.	2.6	26
74	Crystal structure of a DNA containing the planar, phenoxazine-derived bi-functional spectroscopic probe Ç. Nucleic Acids Research, 2011, 39, 4419-4426.	14.5	30
75	Site-Directed Nitroxide Spin Labeling of Biopolymers. Structure and Bonding, 2011, , 121-162.	1.0	22
76	Nitroxides and nucleic acids: Chemistry and electron paramagnetic resonance (EPR) spectroscopy. Pure and Applied Chemistry, 2011, 83, 677-686.	1.9	20
77	Large flanking sequence effects in single nucleotide mismatch detection using fluorescent nucleoside Ňf. Bioorganic and Medicinal Chemistry, 2010, 18, 6121-6126.	3.0	14
78	Synthesis of a 5′â€6‣ocked, 1,10â€Phenanthroline ontaining Nucleoside and Its Incorporation into DNA. European Journal of Organic Chemistry, 2010, 2010, 4713-4718.	2.4	12
79	Noncovalent and Siteâ€Directed Spin Labeling of Nucleic Acids. Angewandte Chemie - International Edition, 2010, 49, 7984-7986.	13.8	44
80	Analytical method to determine the orientation of rigid spin labels in DNA. Physical Review E, 2010, 81, 021911.	2.1	49
81	Site-Directed Spin-Labeling of Nucleic Acids by Click Chemistry: Detection of Abasic Sites in Duplex DNA by EPR Spectroscopy. Journal of the American Chemical Society, 2010, 132, 10424-10428.	13.7	95
82	Folding of the cocaine aptamer studied by EPR and fluorescence spectroscopies using the bifunctional spectroscopic probe C. Nucleic Acids Research, 2009, 37, 3990-3995.	14.5	66
83	Relative Orientation of Rigid Nitroxides by PELDOR: Beyond Distance Measurements in Nucleic Acids. Angewandte Chemie - International Edition, 2009, 48, 3292-3295.	13.8	184
84	Structural features and dynamics of a coldâ€adapted alkaline phosphatase studied by EPR spectroscopy. FEBS Journal, 2009, 276, 2725-2735.	4.7	13
85	Conformational Equilibria of Bulged Sites in Duplex DNA Studied by EPR Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 2664-2675.	2.6	19
86	Ferro- and antiferromagnetic exchange coupling constants in PELDOR spectra. Physical Chemistry Chemical Physics, 2009, 11, 6708.	2.8	45
87	Studying RNA Using Site-Directed Spin-Labeling and Continuous-Wave Electron Paramagnetic Resonance Spectroscopy. Methods in Enzymology, 2009, 469, 303-328.	1.0	68
88	Identification of Single-Base Mismatches in Duplex DNA by EPR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 18054-18056.	13.7	79
89	tert-Butyldimethylsilyl O-protected chitosan and chitooligosaccharides: useful precursors for N-modifications in common organic solvents. Carbohydrate Research, 2008, 343, 2576-2582.	2.3	53
90	Single base interrogation by a fluorescent nucleotide: each of the four DNA bases identified by fluorescence spectroscopy. Chemical Communications, 2008, , 3393.	4.1	52

#	Article	IF	CITATIONS
91	A Nonafluoro Nucleoside as a Sensitive ¹⁹ F NMR Probe of Nucleic Acid Conformation. Organic Letters, 2008, 10, 2745-2747.	4.6	46
92	Theory for Spinâ^'Lattice Relaxation of Spin Probes on Weakly Deformable DNA. Journal of Physical Chemistry B, 2008, 112, 9219-9236.	2.6	6
93	Rigid spin-labeled nucleoside Ç: a nonperturbing EPR probe of nucleic acid conformation. Nucleic Acids Research, 2008, 36, 5946-5954.	14.5	80
94	A Nucleoside That Contains a Rigid Nitroxide Spin Label: A Fluorophore in Disguise. Angewandte Chemie - International Edition, 2007, 46, 2655-2658.	13.8	138
95	Site-specific incorporation of nitroxide spin-labels into 2′-positions of nucleic acids. Nature Protocols, 2007, 2, 1954-1962.	12.0	64
96	Using solid-state 31P{19F} REDOR NMR to measure distances between a trifluoromethyl group and a phosphodiester in nucleic acids. Journal of Magnetic Resonance, 2006, 178, 11-24.	2.1	18
97	Identification of Amino Acids that Promote Specific and Rigid TAR RNA-Tat Protein Complex Formation. Chemistry and Biology, 2005, 12, 329-337.	6.0	34
98	Isolation and characterization of a thermostable RNA ligase 1 from a Thermus scotoductus bacteriophage TS2126 with good single-stranded DNA ligation properties. Nucleic Acids Research, 2005, 33, 135-142.	14.5	70
99	Investigation of Mg2+- and temperature-dependent folding of the hairpin ribozyme by photo-crosslinking: effects of photo-crosslinker tether length and chemistry. Nucleic Acids Research, 2005, 33, 1058-1068.	14.5	7
100	Monitoring tat peptide binding to TAR RNA by solid-state 31P-19F REDOR NMR. Nucleic Acids Research, 2005, 33, 3447-3454.	14.5	63
101	EPR Spectroscopic Analysis of U7 Hammerhead Ribozyme Dynamics during Metal Ion Induced Folding. Biochemistry, 2005, 44, 12870-12878.	2.5	35
102	Use of Enzymes in Organic Synthesis: Reduction of Ketones by Baker's Yeast Revisited. Journal of Chemical Education, 2005, 82, 1049.	2.3	6
103	Solution structure of a nitrous acid induced DNA interstrand cross-link. Nucleic Acids Research, 2004, 32, 2785-2794.	14.5	31
104	Chemical syntheses of inhibitory substrates of the RNA-RNA ligation reaction catalyzed by the hairpin ribozyme. Nucleic Acids Research, 2004, 32, 2017-2022.	14.5	9
105	Sequence context effect on the structure of nitrous acid induced DNA interstrand cross-links. Nucleic Acids Research, 2004, 32, 2795-2801.	14.5	12
106	A new α-helical extension promotes RNA binding by the dsRBD of Rnt1p RNAse III. EMBO Journal, 2004, 23, 2468-2477.	7.8	56
107	Interactions of the antibiotics neomycin B and chlortetracycline with the hammerhead ribozyme as studied by Zn 2+ -dependent RNA cleavage. Bioorganic and Medicinal Chemistry, 2004, 12, 1023-1028.	3.0	3
108	Structural Investigation of a High-Affinity MnII Binding Site in the Hammerhead Ribozyme by EPR Spectroscopy and DFT Calculations. Effects of Neomycin B on Metal-Ion Binding. ChemBioChem, 2003, 4, 1057-1065.	2.6	54

#	Article	IF	CITATIONS
109	Unexpected formation of 2′-deoxy-N3-(3,3,3-trifluoro-1-propenyl)uridine via a Michael-type addition to 3,3,3-trifluoropropyne. Tetrahedron Letters, 2003, 44, 6899-6901.	1.4	9
110	Stereospecific Syntheses of 3â€~-Deuterated Pyrimidine Nucleosides and Their Site-Specific Incorporation into DNA. Organic Letters, 2003, 5, 917-919.	4.6	13
111	EPR spectroscopic analysis of TAR RNA–metal ion interactions. Biochemical and Biophysical Research Communications, 2003, 303, 721-725.	2.1	25
112	Nanometer Distance Measurements on RNA Using PELDOR. Journal of the American Chemical Society, 2003, 125, 3434-3435.	13.7	127
113	Zinc-dependent cleavage in the catalytic core of the hammerhead ribozyme: evidence for a pH-dependent conformational change. Nucleic Acids Research, 2003, 31, 2595-2600.	14.5	12
114	Determination of DNA minor groove width in distamycin-DNA complexes by solid-state NMR. Nucleic Acids Research, 2003, 31, 5084-5089.	14.5	38
115	Electron Paramagnetic Resonance Dynamic Signatures of TAR RNAâ^'Small Molecule Complexes Provide Insight into RNA Structure and Recognitionâ€. Biochemistry, 2002, 41, 14843-14847.	2.5	50
116	Transition State Stabilization by a Catalytic RNA. Science, 2002, 298, 1421-1424.	12.6	271
117	Investigation of RNA-Protein and RNA-Metal Ion Interactions by Electron Paramagnetic Resonance Spectroscopy. Chemistry and Biology, 2002, 9, 699-706.	6.0	66
118	PREPARATION OF BASE-DEUTERATED 2?-DEOXYADENOSINE NUCLEOSIDES AND THEIR SITE-SPECIFIC INCORPORATION INTO DNA. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 1903-1913.	1.1	5
119	Identification and Characterization of a Divalent Metal Ion-Dependent Cleavage Site in the Hammerhead Ribozyme. Biochemistry, 2001, 40, 13849-13856.	2.5	21
120	Site-Specific Incorporation of Nitroxide Spin-Labels into Internal Sites of the TAR RNA; Structure-Dependent Dynamics of RNA by EPR Spectroscopy. Journal of the American Chemical Society, 2001, 123, 1527-1528.	13.7	114
121	Incorporation of 2′-deoxy-5-(trifluoromethyl)uridine and 5-Cyano-2′-deoxyuridine into DNA. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2453-2455.	2.2	41
122	[12] Site-specific sulfhydryl groups for study of RNA conformation via disulfide cross-linking. Methods in Enzymology, 2000, 318, 165-175.	1.0	3
123	Monoalkylation of DNA by reductively activated FR66979. Bioorganic and Medicinal Chemistry, 2000, 8, 173-179.	3.0	12
124	Interstrand disulfide cross-linking of internal sugar residues in duplex RNA. Bioorganic and Medicinal Chemistry, 2000, 8, 269-273.	3.0	25
125	Chemical Synthesis of Cross-Link Lesions Found in Nitrous Acid Treated DNA: A General Method for the Preparation of N2-Substituted 2â€~Deoxyguanosines. Journal of Organic Chemistry, 2000, 65, 2959-2964.	3.2	67
126	Chemical Synthesis and Preliminary Structural Characterization of a Nitrous Acid Interstrand Cross-Linked Duplex DNA. Journal of the American Chemical Society, 1999, 121, 5081-5082.	13.7	92

#	Article	IF	CITATIONS
127	Long-Range Distance Measurements to the Phosphodiester Backbone of Solid Nucleic Acids Using31Pâ~'19F REDOR NMR. Journal of the American Chemical Society, 1999, 121, 6070-6071.	13.7	30
128	Quantification of Formaldehyde-Mediated Covalent Adducts of Adriamycin with DNA. Biochemistry, 1999, 38, 8682-8690.	2.5	20
129	Thiol-Containing RNA for the Study of Structure and Function of Ribozymes. Methods, 1999, 18, 71-77.	3.8	8
130	Inter-domain cross-linking and molecular modelling of the hairpin ribozyme. Journal of Molecular Biology, 1997, 274, 197-212.	4.2	96
131	A Mild and Simple Method for the Preparation of Isocyanates from Aliphatic Amines Using Trichloromethyl Chloroformate. Synthesis of an Isocyanate Containing an Activated Disulfide. Journal of Organic Chemistry, 1996, 61, 3883-3884.	3.2	38
132	Isolation of Oligoribonucleotides Containing Intramolecular Cross-Links. Analytical Biochemistry, 1996, 235, 241-242.	2.4	7
133	Site specific labelling of sugar residues in oligoribonucleotides: reactions of aliphatic isocyanates with 2' amino groups. Nucleic Acids Research, 1996, 24, 3129-3133.	14.5	36
134	An NMR study of [d(CGCGAATTCGCG)]2 containing an interstrand cross-link derived from a distamycin-pyrrole conjugate. Nucleic Acids Research, 1996, 24, 1566-1573.	14.5	18
135	In Vitro Selection of Hammerhead Ribozymes Containing a Bulged Nucleotide in Stem II. Nucleic Acids Research, 1996, 24, 4401-4406.	14.5	21
136	Probing the tertiary structure of the hairpin ribozyme by chemical crosslinking. Collection of Czechoslovak Chemical Communications, 1996, 61, 276-279.	1.0	2
137	Structure-function relationships of hammerhead ribozymes: from understanding to applications. Trends in Biotechnology, 1995, 13, 286-289.	9.3	40
138	Synthesis and reactions with DNA of a family of DNA-DNA afinity cross-linking agents. Tetrahedron, 1994, 50, 12065-12084.	1.9	11
139	Affinity crosslinking of duplex DNA by a pyrrole-oligopeptide conjugate. Journal of the American Chemical Society, 1993, 115, 12633-12634.	13.7	25
140	DNA interstrand cross-linking by reductively activated FR900482 and FR66979. Journal of the American Chemical Society, 1993, 115, 1199-1200.	13.7	48
141	DNA interstrand cross-linking reactions of pyrrole-derived, bifunctional electrophiles: evidence for a common target site in DNA. Journal of the American Chemical Society, 1993, 115, 3407-3415.	13.7	100
142	Interstrand cross-linking of duplex DNA by nitrous acid: covalent structure of the dG-to-dG cross-link at the sequence 5'-CG. Journal of the American Chemical Society, 1992, 114, 4021-4027.	13.7	82
143	Sequence preferences of DNA interstrand cross-linking agents: Importance of minimal DNA structural reorganization in the cross-linking reactions of mechlorethamine, cisplatin and mitomycin C. Tetrahedron, 1991, 47, 2475-2489.	1.9	97
144	Sequence preferences of DNA interstrand cross-linking agents: dG-to-dG cross-linking at 5'-CG by structurally simplified analogs of mitomycin C. Biochemistry, 1990, 29, 9225-9233.	2.5	77

#	Article	IF	CITATIONS
145	The preparation of triglycerides highly enriched with ω-3 polyunsaturated fatty acids via lipase catalyzed interesterification. Tetrahedron Letters, 1989, 30, 1671-1674.	1.4	93
146	Modified RNAs as Tools in RNA Biochemistry. , 0, , 112-129.		4
147	Highly Efficient Polarizing Agents for MASâ€ÐNP of Protonâ€Ðense Molecular Solids. Angewandte Chemie, 0, , .	2.0	1