List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8374216/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface enhanced electrochemiluminescence of the Ru(bpy)32+/tripropylamine system by Au@SiO2 nanoparticles for highly sensitive and selective detection of dopamine. Microchemical Journal, 2022, 176, 107224.	4.5	10
2	DNA-targeted formation and catalytic reactions of DNAzymes for label-free ratiometric electrochemiluminescence biosensing. Talanta, 2021, 225, 121964.	5.5	3
3	Facile, Smart, and Degradable Metal–Organic Framework Nanopesticides Gated with Fe ^{III} -Tannic Acid Networks in Response to Seven Biological and Environmental Stimuli. ACS Applied Materials & Interfaces, 2021, 13, 19507-19520.	8.0	67
4	Protein-Gated Upconversion Nanoparticle-Embedded Mesoporous Silica Nanovehicles via Diselenide Linkages for Drug Release Tracking in Real Time and Tumor Chemotherapy. ACS Applied Materials & Interfaces, 2021, 13, 29070-29082.	8.0	20
5	User-safe and efficient chitosan-gated porous carbon nanopesticides and nanoherbicides. Journal of Colloid and Interface Science, 2021, 594, 20-34.	9.4	29
6	Cyclodextrin polymer-valved MoS2-embedded mesoporous silica nanopesticides toward hierarchical targets via multidimensional stimuli of biological and natural environments. Journal of Hazardous Materials, 2021, 419, 126404.	12.4	42
7	Creation of glycoprotein imprinted self-assembled monolayers with dynamic boronate recognition sites and imprinted cavities for selective glycoprotein recognition. Soft Matter, 2020, 16, 3039-3049.	2.7	9
8	Dual Enhanced Electrochemiluminescence of Aminated Au@SiO ₂ /CdS Quantum Dot Superstructures: Electromagnetic Field Enhancement and Chemical Enhancement. ACS Applied Materials & Interfaces, 2019, 11, 4488-4499.	8.0	38
9	Supramolecular Vesicles Coassembled from Disulfide‣inked Benzimidazolium Amphiphiles and Carboxylate‧ubstituted Pillar[6]arenes that Are Responsive to Five Stimuli. Angewandte Chemie - International Edition, 2017, 56, 2655-2659.	13.8	99
10	Supramolecular Vesicles Coassembled from Disulfide‣inked Benzimidazolium Amphiphiles and Carboxylate‣ubstituted Pillar[6]arenes that Are Responsive to Five Stimuli. Angewandte Chemie, 2017, 129, 2699-2703.	2.0	18
11	Ratiometric electrochemiluminescence sensing platform for sensitive glucose detection based on in situ generation and conversion of coreactants. Sensors and Actuators B: Chemical, 2017, 251, 256-263.	7.8	41
12	Phosphonated Pillar[5]arene-Valved Mesoporous Silica Drug Delivery Systems. ACS Applied Materials & Interfaces, 2017, 9, 19638-19645.	8.0	72
13	Molybdenum disulfide nanosheets supported Au-Pd bimetallic nanoparticles for non-enzymatic electrochemical sensing of hydrogen peroxide and glucose. Sensors and Actuators B: Chemical, 2017, 239, 536-543.	7.8	144
14	Sensitive Glycoprotein Sandwich Assays by the Synergistic Effect of In Situ Generation of Raman Probes and Plasmonic Coupling of Ag Core–Au Satellite Nanostructures. ACS Applied Materials & Interfaces, 2016, 8, 10683-10689.	8.0	12
15	Electrocatalytic oxidation of nitrite using metal-free nitrogen-doped reduced graphene oxide nanosheets for sensitive detection. Talanta, 2016, 155, 329-335.	5.5	51
16	Gated mesoporous carbon nanoparticles as drug delivery system for stimuli-responsive controlled release. Carbon, 2016, 101, 135-142.	10.3	70
17	Carbon Nanodot-Decorated Ag@SiO ₂ Nanoparticles for Fluorescence and Surface-Enhanced Raman Scattering Immunoassays. ACS Applied Materials & Interfaces, 2016, 8, 1033-1040.	8.0	51
18	Facile and Sensitive Glucose Sandwich Assay Using <i>In Situ</i> -Generated Raman Reporters. Analytical Chemistry, 2015, 87, 2016-2021.	6.5	60

#	Article	IF	CITATIONS
19	pH- and redox-triggered synergistic controlled release of a ZnO-gated hollow mesoporous silica drug delivery system. Journal of Materials Chemistry B, 2015, 3, 1426-1432.	5.8	76
20	Combination drug release of smart cyclodextrin-gated mesoporous silica nanovehicles. Chemical Communications, 2015, 51, 7203-7206.	4.1	25
21	Pillar[6]arene-Valved Mesoporous Silica Nanovehicles for Multiresponsive Controlled Release. ACS Applied Materials & Interfaces, 2014, 6, 20430-20436.	8.0	61
22	Integration of simultaneous and cascade release of two drugs into smart single nanovehicles based on DNA-gated mesoporous silica nanoparticles. Chemical Science, 2014, 5, 4424-4433.	7.4	28
23	Multiâ€Responsive and Logic Controlled Release of DNAâ€Gated Mesoporous Silica Vehicles Functionalized with Intercalators for Multiple Delivery. Small, 2014, 10, 980-988.	10.0	61
24	Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites. Nanoscale, 2014, 6, 11303-11309.	5.6	213
25	Synergetic Gating of Metal-Latching Ligands and Metal-Chelating Proteins for Mesoporous Silica Nanovehicles to Enhance Delivery Efficiency. ACS Applied Materials & Interfaces, 2014, 6, 15217-15223.	8.0	11
26	Nitrite electrochemical biosensing based on coupled graphene and gold nanoparticles. Biosensors and Bioelectronics, 2014, 51, 343-348.	10.1	135
27	Identification of molecular recognition of Langmuir–Blodgett monolayers using surface-enhanced Raman scattering spectroscopy. Chemical Communications, 2013, 49, 8680.	4.1	5
28	Tandem Assays of Protein and Clucose with Functionalized Core/Shell Particles Based on Magnetic Separation and Surfaceâ€Enhanced Raman Scattering. Small, 2013, 9, 3259-3264.	10.0	13
29	Bifunctional quantum dot-decorated Ag@SiO2 nanostructures for simultaneous immunoassays of surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF). Journal of Materials Chemistry B, 2013, 1, 2198.	5.8	30
30	Glucose―and pHâ€Responsive Controlled Release of Cargo from Proteinâ€Gated Carbohydrateâ€Functionalized Mesoporous Silica Nanocontainers. Angewandte Chemie - International Edition, 2013, 52, 5580-5584.	13.8	136
31	Creating Protein-Imprinted Self-Assembled Monolayers with Multiple Binding Sites and Biocompatible Imprinted Cavities. Journal of the American Chemical Society, 2013, 135, 9248-9251.	13.7	73
32	Reduced steric hindrance and optimized spatial arrangement of carbohydrate ligands in imprinted monolayers for enhanced protein binding. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 792-800.	2.6	16
33	Annexin A5 Binding and Rebinding to Mixed Phospholipid Monolayers Studied by SPR and AFM. ACS Symposium Series, 2012, , 419-432.	0.5	0
34	Self-Assembly and Molecular Recognition of Adenine- and Thymine-Functionalized Nucleolipids in the Mixed Monolayers and Thymine-Functionalized Nucleolipids on Aqueous Melamine at the Air–Water Interface. Langmuir, 2012, 28, 11153-11163.	3.5	15
35	Synthesis and application of surface enhanced Raman scattering (SERS) tags of Ag@SiO2 core/shell nanoparticles in protein detection. Journal of Materials Chemistry, 2012, 22, 7767.	6.7	90
36	Fast removal of aqueous Hg(ii) with quaternary ammonium-functionalized magnetic mesoporous silica and silica regeneration. Journal of Materials Chemistry, 2011, 21, 6981.	6.7	42

#	Article	IF	CITATIONS
37	In Situ IRRAS Studies of Molecular Recognition of Barbituric Acid Lipids to Melamine at the Air–Water Interface. Journal of Physical Chemistry B, 2011, 115, 13191-13198.	2.6	11
38	Multivalent protein binding in carbohydrate-functionalized monolayers through protein-directed rearrangement and reorientation of glycolipids at the air–water interface. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2128-2135.	2.6	8
39	Enzymeâ€Inspired Controlled Release of Cucurbit[7]uril Nanovalves by Using Magnetic Mesoporous Silica. Chemistry - A European Journal, 2011, 17, 810-815.	3.3	67
40	Inside Cover: Enzyme-Inspired Controlled Release of Cucurbit[7]uril Nanovalves by Using Magnetic Mesoporous Silica (Chem. Eur. J. 3/2011). Chemistry - A European Journal, 2011, 17, 726-726.	3.3	1
41	pH- and competitor-driven nanovalves of cucurbit[7]uril pseudorotaxanes based on mesoporous silica supports for controlled release. Journal of Materials Chemistry, 2010, 20, 3642.	6.7	68
42	Molecular Assemblies of 4-(Hexadecyloxy)- <i>N</i> -(pyridinylmethylene)anilines at the Airâ^'Water Interface and Cu(II)-Promoted Vesicle Formation via Metal Coordination. Journal of Physical Chemistry B, 2010, 114, 11069-11075.	2.6	3
43	Protein-Directed Spatial Rearrangement of Glycolipids at the Airâ^Water Interface for Bivalent Protein Binding: In Situ Infrared Reflection Absorption Spectroscopy. Journal of Physical Chemistry B, 2010, 114, 577-584.	2.6	5
44	Insight into Unusual Downfield NMR Shifts in the Inclusion Complex of Acridine Orange with Cucurbit[7]uril. European Journal of Organic Chemistry, 2009, 2009, 4931-4938.	2.4	27
45	In Situ IRRAS Studies of NH Stretching Bands and Molecular Structures of the Monolayers of Amphiphiles Containing Amide and Amine Units at the Airâ^Water Interface. Journal of Physical Chemistry B, 2009, 113, 1396-1403.	2.6	8
46	In Situ Studies of Metal Coordinations and Molecular Orientations in Monolayers of Amino-Acid-Derived Schiff Bases at the Airâ~Water Interface. Langmuir, 2009, 25, 2941-2948.	3.5	10
47	Enhanced Binding and Biosensing of Carbohydrate-Functionalized Monolayers to Target Proteins by Surface Molecular Imprinting. Journal of Physical Chemistry B, 2009, 113, 11330-11337.	2.6	24
48	Directed Assembly of Binary Monolayers with a High Protein Affinity:Â Infrared Reflection Absorption Spectroscopy (IRRAS) and Surface Plasmon Resonance (SPR). Journal of Physical Chemistry B, 2007, 111, 2347-2356.	2.6	33
49	Protein-Directed Assembly of Binary Monolayers at the Interface and Surface Patterns of Protein on the Monolayers. Langmuir, 2007, 23, 8142-8149.	3.5	7
50	Determination of Chain Orientation in the Monolayers of Amino-Acid-Derived Schiff Base at the Airâ Water Interface Using in Situ Infrared Reflection Absorption Spectroscopy. Langmuir, 2007, 23, 11034-11041.	3.5	8
51	Novel Metal Coordinations in the Monolayers of an Amino-Acid-Derived Schiff Base at the Airâ^'Water Interface and Langmuirâ^'Blodgett Films. Journal of Physical Chemistry C, 2007, 111, 17025-17031.	3.1	12
52	Miscibility of Binary Monolayers at the Airâ^'Water Interface and Interaction of Protein with Immobilized Monolayers by Surface Plasmon Resonance Technique. Langmuir, 2006, 22, 6195-6202.	3.5	14
53	Molecular Recognition of Cytosine- and Guanine-Functionalized Nucleolipids in the Mixed Monolayers at the Airâ 'Water Interface and Langmuirâ 'Blodgett Films. Journal of Physical Chemistry B, 2006, 110, 4914-4923.	2.6	38
54	Chain orientation and headgroup structure in Langmuir monolayers of stearic acid and metal stearate (Ag, Co, Zn, and Pb) studied by infrared reflection-absorption spectroscopy. Journal of Chemical Physics, 2006, 124, 134706.	3.0	48

#	Article	IF	CITATIONS
55	Langmuir monolayer approaches to protein recognition through molecular imprinting. Biosensors and Bioelectronics, 2005, 20, 2053-2060.	10.1	37
56	IRRAS Studies on Chain Orientation in the Monolayers of Amino Acid Amphiphiles at the Airâ^'Water Interface Depending on Metal Complex and Hydrogen Bond Formation with the Headgroups. Journal of Physical Chemistry B, 2005, 109, 7428-7434.	2.6	38
57	Improved thermal stability of Langmuir–Blodgett films through an intermolecular hydrogen bond and metal complex. Journal of Chemical Physics, 2004, 120, 379-383.	3.0	9
58	FT-Raman and FTIR spectroscopic studies of N-octadecanoyl-l-alanine amphiphiles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 401-404.	3.9	4
59	Detection of NH Stretching Signals from the Monolayers of Amino Acid Amphiphiles at the Airâ^Water Interface and Change of Hydrogen Bond Depending on Metal Ion in the Subphase:  Infrared Reflectionâ^Adsorption Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 5666-5670.	2.6	15
60	Molecular Recognition of Nucleolipid Monolayers of 1-(2-Octadecyloxycarbonylethyl)cytosine to Guanosine at the Airâ^'Water Interface and Langmuirâ^'Blodgett Films. Langmuir, 2003, 19, 5389-5396.	3.5	26
61	Molecular Recognition of 1-(2-Octadecyloxycarbonylethyl)cytosine Monolayers to Guanosine at the Airâ^'Water Interface Investigated by Infrared Reflectionâ~'Absorption Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 13636-13642.	2.6	24
62	Monolayer Formation on Silicon and Mica Surfaces Rearranged from N-Hexadecanoyl-l-alanine Supramolecular Structures. Journal of Physical Chemistry B, 2002, 106, 7295-7299.	2.6	18
63	Molecular Structure of Lead N-Octadecanoyl-l-alaninate Langmuirâ^Blodgett Film. Journal of Physical Chemistry B, 2001, 105, 6092-6096.	2.6	13
64	Roles of Metal Complex and Hydrogen Bond in Molecular Structures and Phase Behaviors of Metal N-Octadecanoyl-L-alaninate Langmuirâ^'Blodgett Films. Journal of Physical Chemistry B, 2000, 104, 10047-10052.	2.6	37
65	Well-ordered structure of N-octadecanoyl-l-alanine Langmuir–Blodgett film studied by FTIR spectroscopy. Chemical Physics Letters, 1999, 313, 565-568.	2.6	13
66	Ftir Studies on Phase Transitions of <i>N</i> -Octadecanoyl-L-Alanine and Zinc Octadecanoyl-L-Alaninate Lb Films. Spectroscopy Letters, 1999, 32, 1-16.	1.0	12
67	FTIR and UV-Vis Spectroscopic Studies of Black Soap Film. Journal of Colloid and Interface Science, 1998, 207, 106-112.	9.4	8
68	Poly(ethylene glycol)s catalyzed two-phase dehydrochlorination of poly(vinyl chloride) with potassium hydroxide. Journal of Applied Polymer Science, 1998, 70, 2463-2469.	2.6	6
69	N-Octadecanoyl-I-alanine Amphiphile Monolayer at the Air/Water Interface and LB Film Studied by FTIR Spectroscopy. Langmuir, 1998, 14, 3631-3636.	3.5	62
70	Vibrational Spectroscopic Studies of Molybdena Dispersed on Ceria Support. Spectroscopy Letters, 1998, 31, 441-457.	1.0	2