Han-Hee Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8373917/publications.pdf Version: 2024-02-01

HAN-HEE CHO

#	Article	IF	CITATIONS
1	Advancing operational stability and performance of organic photoanodes for solar water oxidation. Trends in Chemistry, 2022, 4, 93-95.	8.5	3
2	Bulk Heterojunction Organic Semiconductor Photoanodes: Tuning Energy Levels to Optimize Electron Injection. ACS Applied Materials & Interfaces, 2022, 14, 8191-8198.	8.0	5
3	A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion. Energy and Environmental Science, 2021, 14, 3141-3151.	30.8	20
4	A semiconducting polymer bulk heterojunction photoanode for solar water oxidation. Nature Catalysis, 2021, 4, 431-438.	34.4	48
5	Benzodithiopheneâ€Based Spacers for Layered and Quasi‣ayered Lead Halide Perovskite Solar Cells. ChemSusChem, 2021, 14, 3001-3009.	6.8	8
6	Establishing Stability in Organic Semiconductor Photocathodes for Solar Hydrogen Production. Journal of the American Chemical Society, 2020, 142, 7795-7802.	13.7	45
7	Lead Halide Perovskite Quantum Dots To Enhance the Power Conversion Efficiency of Organic Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 12696-12704.	13.8	27
8	Lead Halide Perovskite Quantum Dots To Enhance the Power Conversion Efficiency of Organic Solar Cells. Angewandte Chemie, 2019, 131, 12826-12834.	2.0	10
9	Multiarm and Substituent Effects on Charge Transport of Organic Hole Transport Materials. Chemistry of Materials, 2019, 31, 6605-6614.	6.7	21
10	Fully Conjugated Donor–Acceptor Block Copolymers for Organic Photovoltaics via Heck–Mizoroki Coupling. ACS Macro Letters, 2019, 8, 134-139.	4.8	25
11	Design of Cyanovinyleneâ€Containing Polymer Acceptors with Large Dipole Moment Change for Efficient Charge Generation in Highâ€Performance Allâ€Polymer Solar Cells. Advanced Energy Materials, 2018, 8, 1701436.	19.5	70
12	Shift of the Branching Point of the Sideâ€Chain in Naphthalenediimide (NDI)â€Based Polymer for Enhanced Electron Mobility and Allâ€Polymer Solar Cell Performance. Advanced Functional Materials, 2018, 28, 1803613.	14.9	74
13	Synthesis and side-chain engineering of phenylnaphthalenediimide (PNDI)-based n-type polymers for efficient all-polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 5449-5459.	10.3	29
14	Importance of 2D Conjugated Side Chains of Benzodithiophene-Based Polymers in Controlling Polymer Packing, Interfacial Ordering, and Composition Variations of All-Polymer Solar Cells. Chemistry of Materials, 2017, 29, 9407-9415.	6.7	67
15	Impact of highly crystalline, isoindigo-based small-molecular additives for enhancing the performance of all-polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 21291-21299.	10.3	13
16	Selective engineering of oxygen-containing functional groups using the alkyl ligand oleylamine for revealing the luminescence mechanism of graphene oxide quantum dots. Nanoscale, 2017, 9, 18635-18643.	5.6	19
17	Colorimetric Thermometer from Graphene Oxide Platform Integrated with Red, Green, and Blue Emitting, Responsive Block Copolymers. Chemistry of Materials, 2016, 28, 3446-3453.	6.7	51
18	Terpolymer approach for controlling the crystalline behavior of naphthalene diimide-based polymer acceptors and enhancing the performance of all-polymer solar cells. Polymer Journal, 2016, 48, 517-524.	2.7	25

Han-Hee Cho

#	Article	IF	CITATIONS
19	Donor–Acceptor Random versus Alternating Copolymers for Efficient Polymer Solar Cells: Importance of Optimal Composition in Random Copolymers. Macromolecules, 2016, 49, 2096-2105.	4.8	40
20	Engineering the Shape of Block Copolymer Particles by Surface-Modulated Graphene Quantum Dots. Chemistry of Materials, 2016, 28, 830-837.	6.7	71
21	Surface Engineering of Graphene Quantum Dots and Their Applications as Efficient Surfactants. ACS Applied Materials & Interfaces, 2015, 7, 8615-8621.	8.0	76
22	Molecular structure-device performance relationship in polymer solar cells based on indene-C60 bis-adduct derivatives. Korean Journal of Chemical Engineering, 2015, 32, 261-267.	2.7	16
23	Enhancing Mechanical Properties of Highly Efficient Polymer Solar Cells Using Size-Tuned Polymer Nanoparticles. ACS Applied Materials & Interfaces, 2015, 7, 2668-2676.	8.0	16
24	Multicolor Emitting Block Copolymer-Integrated Graphene Quantum Dots for Colorimetric, Simultaneous Sensing of Temperature, pH, and Metal Ions. Chemistry of Materials, 2015, 27, 5288-5294.	6.7	67
25	Highly Luminescent Polymer Particles Driven by Thermally Reduced Graphene Quantum Dot Surfactants. ACS Macro Letters, 2014, 3, 985-990.	4.8	42
26	Photoinduced Charge Transfer in Donor–Acceptor (DA) Copolymer: Fullerene Bis-adduct Polymer Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 861-868.	8.0	58
27	Importance of Optimal Composition in Random Terpolymer-Based Polymer Solar Cells. Macromolecules, 2013, 46, 6806-6813.	4.8	137
28	Influence of intermolecular interactions of electron donating small molecules on their molecular packing and performance in organic electronic devices. Journal of Materials Chemistry A, 2013, 1, 14538.	10.3	86
29	Polarity and Air-Stability Transitions in Field-Effect Transistors Based on Fullerenes with Different Solubilizing Groups. ACS Applied Materials & Interfaces, 2013, 5, 4865-4871.	8.0	24
30	Effect of Incorporated Nitrogens on the Planarity and Photovoltaic Performance of Donor–Acceptor Copolymers. Macromolecules, 2012, 45, 6415-6423.	4.8	51
31	Controlling Number of Indene Solubilizing Groups in Multiadduct Fullerenes for Tuning Optoelectronic Properties and Open-Circuit Voltage in Organic Solar Cells. ACS Applied Materials & Interfaces, 2012, 4, 110-116.	8.0	89
32	Solvent-Resistant Organic Transistors and Thermally Stable Organic Photovoltaics Based on Cross-linkable Conjugated Polymers. Chemistry of Materials, 2012, 24, 215-221.	6.7	154
33	Controlling side-chain density of electron donating polymers for improving their packing structure and photovoltaic performance. Chemical Communications, 2011, 47, 3577.	4.1	44