
Siuly Siuly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8373711/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epilepsy Detection From EEG Using Complex Network Techniques: A Review. IEEE Reviews in Biomedical Engineering, 2023, 16, 292-306.	13.1	27
2	A Long Short-Term Memory Based Framework for Early Detection of Mild Cognitive Impairment From EEG Signals. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7, 375-388.	3.4	26
3	Neurological abnormality detection from electroencephalography data: a review. Artificial Intelligence Review, 2022, 55, 2275-2312.	9.7	19
4	A Hybrid Approach for COVID-19 Detection Using Biogeography-Based Optimization and Deep Learning. Computers, Materials and Continua, 2022, 70, 3717-3732.	1.5	2
5	A Matrix Determinant Feature Extraction Approach for Decoding Motor and Mental Imagery EEG in Subject-Specific Tasks. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14, 375-387.	2.6	38
6	Texture analysis based graph approach for automatic detection of neonatal seizure from multi-channel EEG signals. Measurement: Journal of the International Measurement Confederation, 2022, 190, 110731.	2.5	17
7	Exploiting pretrained CNN models for the development of an EEG-based robust BCI framework. Computers in Biology and Medicine, 2022, 143, 105242.	3.9	35
8	Evaluation of power spectral and machine learning techniques for the development of subject-specific BCI. , 2022, , 99-120.		12
9	Alcoholic EEG signals recognition based on phase space dynamic and geometrical features. Chaos, Solitons and Fractals, 2022, 158, 112036.	2.5	27
10	A deep learning based framework for diagnosis of mild cognitive impairment. Knowledge-Based Systems, 2022, 248, 108815.	4.0	33
11	A Micro Neural Network for Healthcare Sensor Data Stream Classification in Sustainable and Smart Cities. Computational Intelligence and Neuroscience, 2022, 2022, 1-9.	1.1	1
12	EEG Sleep Stages Analysis and Classification Based on Weighed Complex Network Features. IEEE Transactions on Emerging Topics in Computational Intelligence, 2021, 5, 236-246.	3.4	42
13	Automatic myocardial infarction detection in contrast echocardiography based on polar residual network. Computer Methods and Programs in Biomedicine, 2021, 198, 105791.	2.6	9
14	Classification of Alcoholic EEG Signals Using a Deep Learning Method. IEEE Sensors Journal, 2021, 21, 3552-3560.	2.4	37
15	An Efficient Gabor Walsh-Hadamard Transform Based Approach for Retrieving Brain Tumor Images From MRI. IEEE Access, 2021, 9, 119078-119089.	2.6	12
16	Toward the Development of Versatile Brain–Computer Interfaces. IEEE Transactions on Artificial Intelligence, 2021, 2, 314-328.	3.4	41
17	Exploring Deep Learning Features for Automatic Classification of Human Emotion Using EEG Rhythms. IEEE Sensors Journal, 2021, 21, 14923-14930.	2.4	55
18	A new framework for classification of multi-category hand grasps using EMG signals. Artificial Intelligence in Medicine, 2021, 112, 102005.	3.8	28

#	Article	IF	CITATIONS
19	Epileptic seizure detection using 1 D-convolutional long short-term memory neural networks. Applied Acoustics, 2021, 177, 107941.	1.7	54
20	A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG. PLoS ONE, 2021, 16, e0253094.	1.1	53
21	Guest Editorial: Special issue on "Artificial Intelligence in Health Informatics― Health Information Science and Systems, 2021, 9, 23.	3.4	1
22	New feature extraction for automated detection of epileptic seizure using complex network framework. Applied Acoustics, 2021, 180, 108098.	1.7	13
23	A novel computer-aided diagnosis framework for EEC-based identification of neural diseases. Computers in Biology and Medicine, 2021, 138, 104922.	3.9	16
24	Developing a Deep Learning Based Approach for Anomalies Detection from EEG Data. Lecture Notes in Computer Science, 2021, , 591-602.	1.0	8
25	An Automatic Scheme with Diagnostic Index for Identification of Normal and Depression EEG Signals. Lecture Notes in Computer Science, 2021, , 59-70.	1.0	5
26	Data Mining Based Artificial Intelligent Technique for Identifying Abnormalities from Brain Signal Data. Lecture Notes in Computer Science, 2021, , 198-206.	1.0	8
27	Auto-correlation Based Feature Extraction Approach for EEG Alcoholism Identification. Lecture Notes in Computer Science, 2021, , 47-58.	1.0	7
28	Guest Editorial: Special issue on "Application of artificial intelligence in health research― Health Information Science and Systems, 2020, 8, 1.	3.4	90
29	A New Framework for Automatic Detection of Patients With Mild Cognitive Impairment Using Resting-State EEG Signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 1966-1976.	2.7	80
30	Automated epilepsy detection techniques from electroencephalogram signals: a review study. Health Information Science and Systems, 2020, 8, 33.	3.4	64
31	A Computerized Method for Automatic Detection of Schizophrenia Using EEG Signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 2390-2400.	2.7	109
32	A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications. Computer Methods and Programs in Biomedicine, 2020, 187, 105325.	2.6	56
33	An adaptive image smoothing technique based on localization. , 2020, , .		10
34	Exploring Douglas-Peucker Algorithm in the Detection of Epileptic Seizure from Multicategory EEG Signals. BioMed Research International, 2019, 2019, 1-19.	0.9	18
35	An Integrated MCI Detection Framework Based on Spectral-temporal Analysis. International Journal of Automation and Computing, 2019, 16, 786-799.	4.5	37
36	Exploring Hermite transformation in brain signal analysis for the detection of epileptic seizure. IET Science, Measurement and Technology, 2019, 13, 35-41.	0.9	57

#	Article	IF	CITATIONS
37	A New Design of Mental State Classification for Subject Independent BCI Systems. Irbm, 2019, 40, 297-305.	3.7	28
38	An Advanced Analysis System for Identifying Alcoholic Brain State Through EEG Signals. International Journal of Automation and Computing, 2019, 16, 737-747.	4.5	27
39	Epileptic seizures detection in EEGs blending frequency domain with information gain technique. Soft Computing, 2019, 23, 227-239.	2.1	43
40	A feature extraction technique based on tunable Q-factor wavelet transform for brain signal classification. Journal of Neuroscience Methods, 2019, 312, 43-52.	1.3	67
41	Guest editorial: special issue on "Artificial Intelligence in Health and Medicineâ€, Health Information Science and Systems, 2018, 6, 2.	3.4	3
42	Features based on analytic IMF for classifying motor imagery EEG signals in BCI applications. Measurement: Journal of the International Measurement Confederation, 2018, 116, 68-76.	2.5	68
43	An Efficient Framework for the Analysis of Big Brain Signals Data. Lecture Notes in Computer Science, 2018, , 199-207.	1.0	6
44	Epileptic EEG signal classification using optimum allocation based power spectral density estimation. IET Signal Processing, 2018, 12, 738-747.	0.9	26
45	A computer aided analysis scheme for detecting epileptic seizure from EEG data. International Journal of Computational Intelligence Systems, 2018, 11, 663.	1.6	32
46	A hybrid method based on time–frequency images for classification of alcohol and control EEG signals. Neural Computing and Applications, 2017, 28, 3717-3723.	3.2	37
47	A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals. Computer Methods and Programs in Biomedicine, 2017, 146, 47-57.	2.6	39
48	An optimum allocation sampling based feature extraction scheme for distinguishing seizure and seizure-free EEG signals. Health Information Science and Systems, 2017, 5, 7.	3.4	21
49	Using neutrosophic graph cut segmentation algorithm for qualified rendering image selection in thyroid elastography video. Health Information Science and Systems, 2017, 5, 8.	3.4	5
50	A New Data Mining Scheme for Analysis of Big Brain Signal Data. Lecture Notes in Computer Science, 2017, , 151-164.	1.0	8
51	Improving Prospective Performance in MI Recognition: LS-SVM with Tuning Hyper Parameters. Health Information Science, 2016, , 189-209.	0.3	0
52	Comparative Study: Motor Area EEG and All-Channels EEG. Health Information Science, 2016, , 211-225.	0.3	1
53	Optimum Allocation Aided NaÃ ⁻ ve Bayes Based Learning Process for the Detection of MI Tasks. Health Information Science, 2016, , 227-243.	0.3	0
54	Summary Discussion on the Methods, Future Directions and Conclusions. Health Information Science, 2016, , 247-256.	0.3	0

#	Article	IF	CITATIONS
55	A Statistical Framework for Classifying Epileptic Seizure from Multi-category EEG Signals. Health Information Science, 2016, , 99-125.	0.3	2
56	Injecting Principal Component Analysis with the OA Scheme in the Epileptic EEG Signal Classification. Health Information Science, 2016, , 127-150.	0.3	2
57	Cross-Correlation Aided Logistic Regression Model for the Identification of Motor Imagery EEG Signals in BCI Applications. Health Information Science, 2016, , 153-172.	0.3	1
58	Significance of EEG Signals in Medical and Health Research. Health Information Science, 2016, , 23-41.	0.3	13
59	EEG Signal Analysis and Classification. Health Information Science, 2016, , .	0.3	86
60	Objectives and Structures of the Book. Health Information Science, 2016, , 43-61.	0.3	0
61	Multi-category EEG signal classification developing time-frequency texture features based Fisher Vector encoding method. Neurocomputing, 2016, 218, 251-258.	3.5	54
62	Weighted Visibility Graph With Complex Network Features in the Detection of Epilepsy. IEEE Access, 2016, 4, 6554-6566.	2.6	158
63	Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating. Computer Methods and Programs in Biomedicine, 2016, 137, 247-259.	2.6	195
64	Medical Big Data: Neurological Diseases Diagnosis Through Medical Data Analysis. Data Science and Engineering, 2016, 1, 54-64.	4.6	138
65	Automatic epilepsy detection from EEG introducing a new edge weight method in the complex network. Electronics Letters, 2016, 52, 1430-1432.	0.5	43
66	Analyzing EEG Signal Data for Detection of Epileptic Seizure: Introducing Weight on Visibility Graph with Complex Network Feature. Lecture Notes in Computer Science, 2016, , 56-66.	1.0	16
67	Epileptic seizure detection from EEG signals using logistic model trees. Brain Informatics, 2016, 3, 93-100.	1.8	72
68	Classification of THz pulse signals using two-dimensional cross-correlation feature extraction and non-linear classifiers. Computer Methods and Programs in Biomedicine, 2016, 127, 64-82.	2.6	33
69	Detection of motor imagery EEG signals employing NaÃ ⁻ ve Bayes based learning process. Measurement: Journal of the International Measurement Confederation, 2016, 86, 148-158.	2.5	106
70	Exploring Sampling in the Detection of Multicategory EEG Signals. Computational and Mathematical Methods in Medicine, 2015, 2015, 1-12.	0.7	54
71	Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal classification. Computer Methods and Programs in Biomedicine, 2015, 119, 29-42.	2.6	91
72	Discriminating the brain activities for brain–computer interface applications through the optimal allocation-based approach. Neural Computing and Applications, 2015, 26, 799-811.	3.2	49

#	Article	IF	CITATIONS
73	COMPARISONS BETWEEN MOTOR AREA EEG AND ALL-CHANNELS EEG FOR TWO ALGORITHMS IN MOTOR IMAGERY TASK CLASSIFICATION. Biomedical Engineering - Applications, Basis and Communications, 2014, 26, 1450040.	0.3	10
74	Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain–computer interface. Computer Methods and Programs in Biomedicine, 2014, 113, 767-780.	2.6	76
75	A novel statistical algorithm for multiclass EEG signal classification. Engineering Applications of Artificial Intelligence, 2014, 34, 154-167.	4.3	59
76	Identification of motor imagery tasks through CC-LR algorithm in brain computer interface. International Journal of Bioinformatics Research and Applications, 2013, 9, 156.	0.1	52
77	Improving the Separability of Motor Imagery EEG Signals Using a Cross Correlation-Based Least Square Support Vector Machine for Brain–Computer Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 526-538.	2.7	171
78	Developing a logistic regression model with cross-correlation for motor imagery signal recognition. , 2011, , .		15
79	Clustering technique-based least square support vector machine for EEG signal classification. Computer Methods and Programs in Biomedicine, 2011, 104, 358-372.	2.6	206
80	EEG signal classification based on simple random sampling technique with least square support vector machine. International Journal of Biomedical Engineering and Technology, 2011, 7, 390.	0.2	50
81	Analysis and classification of EEG signals using a hybrid clustering technique. , 2010, , .		24
82	Classification of EEG Signals Using Sampling Techniques and Least Square Support Vector Machines. Lecture Notes in Computer Science, 2009, , 375-382.	1.0	30
83	Classification of schizophrenia patients through empirical wavelet transformation using electroencephalogram signals. , 0, , 1-1-1-26.		24
84	Weighted complex network based framework for epilepsy detection from EEG signals. , 0, , 3-1-3-22.		2