Vitor B Pinheiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8373687/publications.pdf

Version: 2024-02-01

34 papers

2,085 citations

361388 20 h-index 395678 33 g-index

42 all docs 42 docs citations

42 times ranked 1969 citing authors

#	Article	IF	CITATIONS
1	Fast quantification of gut bacterial species in cocultures using flow cytometry and supervised classification. ISME Communications, 2022, 2, .	4.2	6
2	A novel framework for engineering protein loops exploring length and compositional variation. Scientific Reports, 2021, 11, 9134.	3.3	6
3	Life orthogonal. Biochemist, 2021, 43, 40-43.	0.5	1
4	Biotechnology Tools Derived from the Bacteriophage/Bacteria Arms Race., 2020,,.		0
5	Structural Studies of HNA Substrate Specificity in Mutants of an Archaeal DNA Polymerase Obtained by Directed Evolution. Biomolecules, 2020, 10, 1647.	4.0	7
6	Beneath the XNA world: Tools and targets to build novel biology. Current Opinion in Systems Biology, 2020, 24, 142-152.	2.6	5
7	Bacterial Cell Display as a Robust and Versatile Platform for Engineering Lowâ€Affinity Ligands and Enzymes. ChemBioChem, 2020, 21, 2844-2853.	2.6	11
8	Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins. Nucleic Acids Research, 2019, 47, 7130-7142.	14.5	23
9	Two New Plasmid Post-segregational Killing Mechanisms for the Implementation of Synthetic Gene Networks in Escherichia coli. IScience, 2019, 14, 323-334.	4.1	41
10	Kinetic analysis of <i>N</i> -alkylaryl carboxamide hexitol nucleotides as substrates for evolved polymerases. Nucleic Acids Research, 2019, 47, 2160-2168.	14.5	10
11	Engineering-driven biological insights into DNA polymerase mechanism. Current Opinion in Biotechnology, 2019, 60, 9-16.	6.6	7
12	Darwin Assembly: fast, efficient, multi-site bespoke mutagenesis. Nucleic Acids Research, 2018, 46, e51-e51.	14.5	32
13	Phosphonomethyl Oligonucleotides as Backbone-Modified Artificial Genetic Polymers. Journal of the American Chemical Society, 2018, 140, 6690-6699.	13.7	48
14	<i>E. coli</i> surface display of streptavidin for directed evolution of an allylic deallylase. Chemical Science, 2018, 9, 5383-5388.	7.4	79
15	Xenobiotic Nucleic Acid (XNA) Synthesis by Phi29 DNA Polymerase. Current Protocols in Chemical Biology, 2018, 10, e41.	1.7	16
16	XNA ligation using T4 DNA ligase in crowding conditions. Chemical Communications, 2018, 54, 6408-6411.	4.1	30
17	XNA Synthesis and Reverse Transcription by Engineered Thermophilic Polymerases. Current Protocols in Chemical Biology, 2018, 10, e47.	1.7	7
18	Methylated Nucleobases: Synthesis and Evaluation for Base Pairing Inâ€Vitro and Inâ€Vivo. Chemistry - A European Journal, 2018, 24, 12695-12707.	3.3	6

#	Article	IF	CITATIONS
19	Synthetic biology approaches to biological containment: pre-emptively tackling potential risks. Essays in Biochemistry, 2016, 60, 393-410.	4.7	68
20	Selection platforms for directed evolution in synthetic biology. Biochemical Society Transactions, 2016, 44, 1165-1175.	3.4	69
21	Isoguanine and 5â€Methylâ€Isocytosine Bases, In Vitro and In Vivo. Chemistry - A European Journal, 2015, 21, 5009-5022.	3.3	33
22	Catalysing Mirror Life. ChemBioChem, 2015, 16, 899-901.	2.6	1
23	Catalysts from synthetic genetic polymers. Nature, 2015, 518, 427-430.	27.8	230
24	Towards XNA nanotechnology: new materials from synthetic genetic polymers. Trends in Biotechnology, 2014, 32, 321-328.	9.3	110
25	Compartmentalized Selfâ€Tagging for In Vitroâ€Directed Evolution of XNA Polymerases. Current Protocols in Nucleic Acid Chemistry, 2014, 57, 9.9.1-18.	0.5	20
26	Synthetic polymers and their potential as genetic materials. BioEssays, 2013, 35, 113-122.	2.5	34
27	Structures of an Apo and a Binary Complex of an Evolved Archeal B Family DNA Polymerase Capable of Synthesising Highly Cy-Dye Labelled DNA. PLoS ONE, 2013, 8, e70892.	2.5	29
28	A short adaptive path from DNA to RNA polymerases. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8067-8072.	7.1	93
29	The XNA world: progress towards replication and evolution of synthetic genetic polymers. Current Opinion in Chemical Biology, 2012, 16, 245-252.	6.1	164
30	Synthetic Genetic Polymers Capable of Heredity and Evolution. Science, 2012, 336, 341-344.	12.6	635
31	Ice as a protocellular medium for RNA replication. Nature Communications, 2010, 1, 76.	12.8	121
32	Evolving a Polymerase for Hydrophobic Base Analogues. Journal of the American Chemical Society, 2009, 131, 14827-14837.	13.7	73
33	Expression and insecticidal activity of Yersinia pseudotuberculosis and Photorhabdus luminescens toxin complex proteins. Cellular Microbiology, 2007, 9, 2372-2380.	2.1	30
34	How to kill a mocking bug?. Cellular Microbiology, 2006, 8, 545-557.	2.1	32