Vitor B Pinheiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8373687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthetic Genetic Polymers Capable of Heredity and Evolution. Science, 2012, 336, 341-344.	12.6	635
2	Catalysts from synthetic genetic polymers. Nature, 2015, 518, 427-430.	27.8	230
3	The XNA world: progress towards replication and evolution of synthetic genetic polymers. Current Opinion in Chemical Biology, 2012, 16, 245-252.	6.1	164
4	Ice as a protocellular medium for RNA replication. Nature Communications, 2010, 1, 76.	12.8	121
5	Towards XNA nanotechnology: new materials from synthetic genetic polymers. Trends in Biotechnology, 2014, 32, 321-328.	9.3	110
6	A short adaptive path from DNA to RNA polymerases. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8067-8072.	7.1	93
7	<i>E. coli</i> surface display of streptavidin for directed evolution of an allylic deallylase. Chemical Science, 2018, 9, 5383-5388.	7.4	79
8	Evolving a Polymerase for Hydrophobic Base Analogues. Journal of the American Chemical Society, 2009, 131, 14827-14837.	13.7	73
9	Selection platforms for directed evolution in synthetic biology. Biochemical Society Transactions, 2016, 44, 1165-1175.	3.4	69
10	Synthetic biology approaches to biological containment: pre-emptively tackling potential risks. Essays in Biochemistry, 2016, 60, 393-410.	4.7	68
11	Phosphonomethyl Oligonucleotides as Backbone-Modified Artificial Genetic Polymers. Journal of the American Chemical Society, 2018, 140, 6690-6699.	13.7	48
12	Two New Plasmid Post-segregational Killing Mechanisms for the Implementation of Synthetic Gene Networks in Escherichia coli. IScience, 2019, 14, 323-334.	4.1	41
13	Synthetic polymers and their potential as genetic materials. BioEssays, 2013, 35, 113-122.	2.5	34
14	lsoguanine and 5â€Methylâ€Isocytosine Bases, In Vitro and In Vivo. Chemistry - A European Journal, 2015, 21, 5009-5022.	3.3	33
15	How to kill a mocking bug?. Cellular Microbiology, 2006, 8, 545-557.	2.1	32
16	Darwin Assembly: fast, efficient, multi-site bespoke mutagenesis. Nucleic Acids Research, 2018, 46, e51-e51.	14.5	32
17	Expression and insecticidal activity of Yersinia pseudotuberculosis and Photorhabdus luminescens toxin complex proteins. Cellular Microbiology, 2007, 9, 2372-2380.	2.1	30
18	XNA ligation using T4 DNA ligase in crowding conditions. Chemical Communications, 2018, 54, 6408-6411.	4.1	30

VITOR B PINHEIRO

#	Article	IF	CITATIONS
19	Structures of an Apo and a Binary Complex of an Evolved Archeal B Family DNA Polymerase Capable of Synthesising Highly Cy-Dye Labelled DNA. PLoS ONE, 2013, 8, e70892.	2.5	29
20	Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins. Nucleic Acids Research, 2019, 47, 7130-7142.	14.5	23
21	Compartmentalized Selfâ€Tagging for In Vitroâ€Directed Evolution of XNA Polymerases. Current Protocols in Nucleic Acid Chemistry, 2014, 57, 9.9.1-18.	0.5	20
22	Xenobiotic Nucleic Acid (XNA) Synthesis by Phi29 DNA Polymerase. Current Protocols in Chemical Biology, 2018, 10, e41.	1.7	16
23	Bacterial Cell Display as a Robust and Versatile Platform for Engineering Lowâ€Affinity Ligands and Enzymes. ChemBioChem, 2020, 21, 2844-2853.	2.6	11
24	Kinetic analysis of <i>N</i> -alkylaryl carboxamide hexitol nucleotides as substrates for evolved polymerases. Nucleic Acids Research, 2019, 47, 2160-2168.	14.5	10
25	XNA Synthesis and Reverse Transcription by Engineered Thermophilic Polymerases. Current Protocols in Chemical Biology, 2018, 10, e47.	1.7	7
26	Engineering-driven biological insights into DNA polymerase mechanism. Current Opinion in Biotechnology, 2019, 60, 9-16.	6.6	7
27	Structural Studies of HNA Substrate Specificity in Mutants of an Archaeal DNA Polymerase Obtained by Directed Evolution. Biomolecules, 2020, 10, 1647.	4.0	7
28	Methylated Nucleobases: Synthesis and Evaluation for Base Pairing Inâ€Vitro and Inâ€Vivo. Chemistry - A European Journal, 2018, 24, 12695-12707.	3.3	6
29	A novel framework for engineering protein loops exploring length and compositional variation. Scientific Reports, 2021, 11, 9134.	3.3	6
30	Fast quantification of gut bacterial species in cocultures using flow cytometry and supervised classification. ISME Communications, 2022, 2, .	4.2	6
31	Beneath the XNA world: Tools and targets to build novel biology. Current Opinion in Systems Biology, 2020, 24, 142-152.	2.6	5
32	Catalysing Mirror Life. ChemBioChem, 2015, 16, 899-901.	2.6	1
33	Life orthogonal. Biochemist, 2021, 43, 40-43.	0.5	1

Biotechnology Tools Derived from the Bacteriophage/Bacteria Arms Race. , 2020, , .