Frank L H Menke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8373443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A conserved module regulates receptor kinase signalling in immunity and development. Nature Plants, 2022, 8, 356-365.	4.7	27
2	Host-interactor screens of <i>Phytophthora infestans</i> RXLR proteins reveal vesicle trafficking as a major effector-targeted process. Plant Cell, 2021, 33, 1447-1471.	3.1	46
3	Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity. Nature Communications, 2021, 12, 3335.	5.8	112
4	Plant pathogens convergently evolved to counteract redundant nodes of an NLR immune receptor network. PLoS Biology, 2021, 19, e3001136.	2.6	69
5	Activation loop phosphorylation of a non-RD receptor kinase initiates plant innate immune signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
6	Large-scale identification of ubiquitination sites on membrane-associated proteins in <i>Arabidopsis thaliana</i> seedlings. Plant Physiology, 2021, 185, 1483-1488.	2.3	29
7	Appressorium-mediated plant infection by Magnaporthe oryzae is regulated by a Pmk1-dependent hierarchical transcriptional network. Nature Microbiology, 2021, 6, 1383-1397.	5.9	44
8	The tomato receptor CuRe1 senses a cell wall protein to identify Cuscuta as a pathogen. Nature Communications, 2020, 11, 5299.	5.8	36
9	The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature, 2020, 585, 569-573.	13.7	208
10	Phosphorylation-Regulated Activation of the Arabidopsis RRS1-R/RPS4 Immune Receptor Complex Reveals Two Distinct Effector Recognition Mechanisms. Cell Host and Microbe, 2020, 27, 769-781.e6.	5.1	50
11	N-terminal β-strand underpins biochemical specialization of an ATG8 isoform. PLoS Biology, 2019, 17, e3000373.	2.6	47
12	A sensor kinase controls turgor-driven plant infection by the rice blast fungus. Nature, 2019, 574, 423-427.	13.7	87
13	A <i>Lotus japonicus</i> cytoplasmic kinase connects Nod factor perception by the NFR5 LysM receptor to nodulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14339-14348.	3.3	28
14	Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector― and PAMPâ€ŧriggered immunity in plants. New Phytologist, 2019, 221, 2160-2175.	3.5	102
15	Anion channel SLAH3 is a regulatory target of chitin receptor-associated kinase PBL27 in microbial stomatal closure. ELife, 2019, 8, .	2.8	48
16	Phosphocode-dependent functional dichotomy of a common co-receptor in plant signalling. Nature, 2018, 561, 248-252.	13.7	126
17	<i>Arabidopsis</i> downy mildew effector HaRxL106 suppresses plant immunity by binding to RADICALâ€INDUCED CELL DEATH1. New Phytologist, 2018, 220, 232-248.	3.5	51
18	Regulation of pattern recognition receptor signalling by phosphorylation and ubiquitination. Current Opinion in Plant Biology, 2018, 45, 162-170.	3.5	43

FRANK L H MENKE

#	Article	IF	CITATIONS
19	Receptor-Like Cytoplasmic Kinases Directly Link Diverse Pattern Recognition Receptors to the Activation of Mitogen-Activated Protein Kinase Cascades in Arabidopsis. Plant Cell, 2018, 30, 1543-1561.	3.1	219
20	Autophosphorylation-based Calcium (Ca2+) Sensitivity Priming and Ca2+/Calmodulin Inhibition of Arabidopsis thaliana Ca2+-dependent Protein Kinase 28 (CPK28). Journal of Biological Chemistry, 2017, 292, 3988-4002.	1.6	48
21	Protein–Protein Interaction Assays with Effector–GFP Fusions in Nicotiana benthamiana. Methods in Molecular Biology, 2017, 1659, 85-98.	0.4	8
22	The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1. PLoS Pathogens, 2016, 12, e1005811.	2.1	113
23	An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. ELife, 2016, 5, .	2.8	189
24	Attenuation of pattern recognition receptor signaling is mediated by a <scp>MAP</scp> kinase kinase kinase kinase. EMBO Reports, 2016, 17, 441-454.	2.0	50
25	Plants get on <scp>PAR</scp> with poly(<scp>ADP</scp> â€ribosyl)ation. EMBO Reports, 2016, 17, 1677-1678.	2.0	1
26	A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors. Cell, 2015, 161, 1089-1100.	13.5	454
27	Septin-Dependent Assembly of the Exocyst Is Essential for Plant Infection by <i>Magnaporthe oryzae</i> . Plant Cell, 2015, 27, 3277-3289.	3.1	79
28	Phosphopeptide Immuno-Affinity Enrichment to Enhance Detection of Tyrosine Phosphorylation in Plants. Methods in Molecular Biology, 2015, 1306, 135-146.	0.4	4
29	A Bacterial Tyrosine Phosphatase Inhibits Plant Pattern Recognition Receptor Activation. Science, 2014, 343, 1509-1512.	6.0	152
30	Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant Immunity. Molecular Cell, 2014, 54, 43-55.	4.5	744
31	Quantitative Phosphoproteomics after Auxin-stimulated Lateral Root Induction Identifies an SNX1 Protein Phosphorylation Site Required for Growth. Molecular and Cellular Proteomics, 2013, 12, 1158-1169.	2.5	95
32	Targeted Quantitative Phosphoproteomics Approach for the Detection of Phospho-tyrosine Signaling in Plants. Journal of Proteome Research, 2012, 11, 438-448.	1.8	44
33	Phosphoproteomics perspective on plant signal transduction and tyrosine phosphorylation. Phytochemistry, 2011, 72, 997-1006.	1.4	56
34	Plant Asymmetric Cell Division, Vive la Différence!. Cell, 2009, 137, 1189-1192.	13.5	18
35	Genomeâ€scale Arabidopsis promoter array identifies targets of the histone acetyltransferase GCN5. Plant Journal, 2008, 56, 493-504.	2.8	120
36	Quantitative Phosphoproteomics of Early Elicitor Signaling in Arabidopsis. Molecular and Cellular Proteomics, 2007, 6, 1198-1214.	2.5	614

FRANK L H MENKE

#	Article	IF	CITATIONS
37	Membrane-associated transcripts in Arabidopsis; their isolation and characterization by DNA microarray analysis and bioinformatics. Plant Journal, 2006, 46, 708-721.	2.8	33
38	Tobacco Transcription Factor WRKY1 Is Phosphorylated by the MAP Kinase SIPK and Mediates HR-Like Cell Death in Tobacco. Molecular Plant-Microbe Interactions, 2005, 18, 1027-1034.	1.4	157
39	High humidity suppressesssi4-mediated cell death and disease resistance upstream of MAP kinase activation, H2O2production and defense gene expression. Plant Journal, 2004, 39, 920-932.	2.8	78
40	Silencing of the Mitogen-Activated Protein Kinase MPK6 Compromises Disease Resistance in Arabidopsis. Plant Cell, 2004, 16, 897-907.	3.1	211
41	A Catharanthus roseus BPF-1 homologue interacts with an elicitor-responsive region of the secondary metabolite biosynthetic gene Str and is induced by elicitor via a JA-independent signal transduction pathway. Plant Molecular Biology, 2000, 44, 675-685.	2.0	112
42	Involvement of the Octadecanoid Pathway and Protein Phosphorylation in Fungal Elicitor-Induced Expression of Terpenoid Indole Alkaloid Biosynthetic Genes in Catharanthus roseus. Plant Physiology, 1999, 119, 1289-1296.	2.3	218
43	The promoter of the strictosidine synthase gene from periwinkle confers elicitor-inducible expression in transgenic tobacco and binds nuclear factors GT-1 and GBF. Plant Molecular Biology, 1999, 39, 1299-1310.	2.0	59
44	A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO Journal, 1999, 18, 4455-4463.	3.5	406
45	Perception of a conserved family of plant signalling peptides by the receptor kinase HSL3. ELife, 0, 11, .	2.8	20