

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8373420/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemoprofiling as Breeding Tool for Pharmaceutical Use of Salix. Frontiers in Plant Science, 2021, 12, 579820.	1.7	7
2	Comparative Anti-Inflammatory Effects of Salix Cortex Extracts and Acetylsalicylic Acid in SARS-CoV-2 Peptide and LPS-Activated Human In Vitro Systems. International Journal of Molecular Sciences, 2021, 22, 6766.	1.8	16
3	Identification of Salicylates in Willow Bark (Salix Cortex) for Targeting Peripheral Inflammation. International Journal of Molecular Sciences, 2021, 22, 11138.	1.8	9
4	Drug-Drug Interaction Potential, Cytotoxicity, and Reactive Oxygen Species Production of Salix Cortex Extracts Using Human Hepatocyte-Like HepaRG Cells. Frontiers in Pharmacology, 2021, 12, 779801.	1.6	4
5	Plant responses to ozone: Effects of different ozone exposure durations on plant growth and biochemical quality of Brassica campestris L. ssp. chinensis. Scientia Horticulturae, 2020, 262, 108921.	1.7	20
6	1-Methoxy-3-indolylmethyl DNA adducts in six tissues, and blood protein adducts, in mice under pak choi diet: time course and persistence. Archives of Toxicology, 2019, 93, 1515-1527.	1.9	5
7	Effects of harvest techniques and drying methods on the stability of glucosinolates in Moringa oleifera leaves during post-harvest. Scientia Horticulturae, 2019, 246, 998-1004.	1.7	19
8	Influence of nutrient supply and elicitors on glucosinolate production in E. sativa hairy root cultures. Plant Cell, Tissue and Organ Culture, 2018, 132, 561-572.	1.2	10
9	Oral administration of nasturtium affects peptide YY secretion in male subjects. Molecular Nutrition and Food Research, 2017, 61, 1600886.	1.5	5
10	Benzylglucosinolate Derived Isothiocyanate from Tropaeolum majus Reduces Gluconeogenic Gene and Protein Expression in Human Cells. PLoS ONE, 2016, 11, e0162397.	1.1	28
11	Metabolite Profiling Reveals a Specific Response in Tomato to Predaceous Chrysoperla carnea Larvae and Herbivore(s)-Predator Interactions with the Generalist Pests Tetranychus urticae and Myzus persicae. Frontiers in Plant Science, 2016, 7, 1256.	1.7	12
12	The Aggregation Pheromone of Phyllotreta striolata (Coleoptera: Chrysomelidae) Revisited. Journal of Chemical Ecology, 2016, 42, 748-755.	0.9	13
13	Characteristic single glucosinolates from Moringa oleifera: Induction of detoxifying enzymes and lack of genotoxic activity in various model systems. Food and Function, 2016, 7, 4660-4674.	2.1	10
14	Pheromone Blend Analysis and Cross-Attraction among Populations of Maruca vitrata from Asia and West Africa. Journal of Chemical Ecology, 2015, 41, 1155-1162.	0.9	12
15	Ecotype Variability in Growth and Secondary Metabolite Profile in <i>Moringa oleifera</i> : Impact of Sulfur and Water Availability. Journal of Agricultural and Food Chemistry, 2015, 63, 2852-2861.	2.4	54
16	Single- versus Multiple-Pest Infestation Affects Differently the Biochemistry of Tomato (<i>Solanum) Tj ETQq0 0</i>	0 rgBT /O	verlock 10 Tf 42

17	Metabolic Engineering of Aliphatic Glucosinolates in Hairy Root Cultures of Arabidopsis thaliana. Plant Molecular Biology Reporter, 2015, 33, 598-608.	1.0	12
18	Development of a reliable extraction and quantification method for glucosinolates in Moringa oleifera. Food Chemistry, 2015, 166, 456-464.	4.2	63

ING

#	Article	IF	CITATIONS
19	A secondary metabolite of Brassicales, 1-methoxy-3-indolylmethyl glucosinolate, as well as its degradation product, 1-methoxy-3-indolylmethyl alcohol, forms DNA adducts in the mouse, but in varying tissues and cells. Archives of Toxicology, 2014, 88, 823-36.	1.9	17
20	<i>Phyllotreta striolata</i> flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7349-7354.	3.3	116
21	Characterization, mode of action, and efficacy of twelve silica-based acaricides against poultry red mite (Dermanyssus gallinae) in vitro. Parasitology Research, 2014, 113, 3167-3175.	0.6	22
22	Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera. Mycorrhiza, 2014, 24, 565-570.	1.3	28
23	Glucosinolates from pak choi and broccoli induce enzymes and inhibit inflammation and colon cancer differently. Food and Function, 2014, 5, 1073-1081.	2.1	70
24	Determination of benzyl isothiocyanate metabolites in human plasma and urine by LC-ESI-MS/MS after ingestion of nasturtium (Tropaeolum majus L.). Analytical and Bioanalytical Chemistry, 2013, 405, 7427-7436.	1.9	24
25	Hairy roots, callus, and mature plants of Arabidopsis thaliana exhibit distinct glucosinolate and gene expression profiles. Plant Cell, Tissue and Organ Culture, 2013, 115, 45-54.	1.2	15
26	Moringa Oleifera—Establishment and Multiplication of Different Ecotypes In Vitro. Gesunde Pflanzen, 2013, 65, 21-31.	1.7	18
27	Effects of Phytohormones and Jasmonic Acid on Glucosinolate Content in Hairy Root Cultures of Sinapis alba and Brassica rapa. Applied Biochemistry and Biotechnology, 2013, 169, 624-635.	1.4	44
28	Impact of the PGPB Enterobacter radicincitans DSM 16656 on Growth, Glucosinolate Profile, and Immune Responses of Arabidopsis thaliana. Microbial Ecology, 2013, 65, 661-670.	1.4	56
29	UV-B Irradiation Changes Specifically the Secondary Metabolite Profile in Broccoli Sprouts: Induced Signaling Overlaps with Defense Response to Biotic Stressors. Plant and Cell Physiology, 2012, 53, 1546-1560.	1.5	201
30	Characterization of Products from the Reaction of Glucosinolate-Derived Isothiocyanates with Cysteine and Lysine Derivatives Formed in Either Model Systems or Broccoli Sprouts. Journal of Agricultural and Food Chemistry, 2012, 60, 7735-7745.	2.4	73
31	Thermally Induced Degradation of Aliphatic Glucosinolates: Identification of Intermediary Breakdown Products and Proposed Degradation Pathways. Journal of Agricultural and Food Chemistry, 2012, 60, 9890-9899.	2.4	47
32	Thermally Induced Degradation of Sulfur-Containing Aliphatic Glucosinolates in Broccoli Sprouts (<i>Brassica oleracea</i> var. <i>italica</i>) and Model Systems. Journal of Agricultural and Food Chemistry, 2012, 60, 2231-2241.	2.4	52
33	Water Stress and Aphid Feeding Differentially Influence Metabolite Composition in Arabidopsis thaliana (L.). PLoS ONE, 2012, 7, e48661.	1.1	128
34	Influence of the chemical structure on the thermal degradation of the glucosinolates in broccoli sprouts. Food Chemistry, 2012, 130, 1-8.	4.2	71
35	A Basic Approach Towards the Development of Bioelectric Bacterial Biosensors for the Detection of Plant Viruses. Journal of Phytopathology, 2012, 160, 106-111.	0.5	10
36	Polysaccharide elicitors enhance anthocyanin and phenolic acid accumulation in cell suspension cultures of Vitis vinifera. Plant Cell, Tissue and Organ Culture, 2012, 108, 401-409.	1.2	93

Inga

#	Article	IF	CITATIONS
37	Male Phyllotreta striolata (F.) Produce an Aggregation Pheromone: Identification of Male-specific compounds and Interaction with Host Plant Volatiles. Journal of Chemical Ecology, 2011, 37, 85-97.	0.9	42
38	Impact of hydroxylated and non-hydroxylated aliphatic glucosinolates in Arabidopsis thaliana crosses on plant resistance against a generalist and a specialist herbivore. Chemoecology, 2011, 21, 171-180.	0.6	14
39	Water stress alters aphid-induced glucosinolate response in Brassica oleracea var. italica differently. Chemoecology, 2011, 21, 235-242.	0.6	43
40	Specific Poly-phenolic Compounds in Cell Culture of Vitis vinifera L. cv. Gamay Fréaux. Applied Biochemistry and Biotechnology, 2011, 164, 148-161.	1.4	38
41	Effects of Pulsed Electric Field on Secondary Metabolism of Vitis vinifera L. cv. Gamay Fréaux Suspension Culture and Exudates. Applied Biochemistry and Biotechnology, 2011, 164, 443-453.	1.4	46
42	Identification of glucosinolate congeners able to form DNA adducts and to induce mutations upon activation by myrosinase. Molecular Nutrition and Food Research, 2011, 55, 783-792.	1.5	50
43	Effects of elicitors and high hydrostatic pressure on secondary metabolism of Vitis vinifera suspension culture. Process Biochemistry, 2011, 46, 1411-1416.	1.8	44
44	Direct and admixture toxicity of diatomaceous earth and monoterpenoids against the storage pests Callosobruchus maculatus (F.) and Sitophilus oryzae (L.). Journal of Pest Science, 2010, 83, 105-112.	1.9	55
45	Influence of water stress on the glucosinolate profile of <i>Brassica oleracea</i> var. <i>italica</i> and the performance of <i>Brevicoryne brassicae</i> and <i>Myzus persicae</i> . Entomologia Experimentalis Et Applicata, 2010, 137, 229-236.	0.7	80
46	Factors Influencing the Variability of Antioxidative Phenolic Glycosides in Salix Species. Journal of Agricultural and Food Chemistry, 2010, 58, 8205-8210.	2.4	31
47	Response of Glucosinolate and Flavonoid Contents and Composition of Brassica rapa ssp.chinensis(L.) Hanelt to Silica Formulations Used as Insecticides. Journal of Agricultural and Food Chemistry, 2010, 58, 12473-12480.	2.4	12
48	Short-term and moderate UV-B radiation effects on secondary plant metabolism in different organs of nasturtium (Tropaeolum majus L.). Innovative Food Science and Emerging Technologies, 2009, 10, 93-96.	2.7	84
49	Antifeedant activity and toxicity of leaf extracts from Porteresia coarctata Takeoka and their effects on the physiology of Spodoptera litura (F.). Journal of Pest Science, 2008, 81, 79-84.	1.9	22
50	Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry, 2006, 67, 2450-2462.	1.4	248
51	Nano-fabricated Materials in Cancer Treatment and Agri-biotech Applications: Buckyballs in Quantum Holy Grails. IETE Journal of Research, 2006, 52, 339-356.	1.8	7
52	Major Signaling Pathways Modulate Arabidopsis Glucosinolate Accumulation and Response to Both Phloem-Feeding and Chewing Insects. Plant Physiology, 2005, 138, 1149-1162.	2.3	387
53	First detection of a microsporidium in the crucifer pest Hellula undalis (Lepidoptera: Pyralidae)—a possible control agent?. Biological Control, 2003, 26, 202-208.	1.4	3