
Murray Cairns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8373332/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genetics, 2015, 47, 291-295.	21.4	3,905
2	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	12.6	1,085
3	Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604, 502-508.	27.8	929
4	Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 2017, 49, 27-35.	21.4	838
5	Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. Biological Psychiatry, 2018, 84, 644-654.	1.3	627
6	Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell, 2018, 173, 1705-1715.e16.	28.9	623
7	The genetic architecture of the human cerebral cortex. Science, 2020, 367, .	12.6	450
8	Identifying miRNAs, targets and functions. Briefings in Bioinformatics, 2014, 15, 1-19.	6.5	444
9	Schizophrenia is associated with an increase in cortical microRNA biogenesis. Molecular Psychiatry, 2010, 15, 1176-1189.	7.9	396
10	The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Molecular Psychiatry, 2014, 19, 486-494.	7.9	356
11	Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Human Molecular Genetics, 2008, 17, 1156-1168.	2.9	312
12	A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain, Behavior, and Immunity, 2012, 26, 469-479.	4.1	295
13	Upregulation of Dicer and MicroRNA Expression in the Dorsolateral Prefrontal Cortex Brodmann Area 46 in Schizophrenia. Biological Psychiatry, 2011, 69, 180-187.	1.3	236
14	Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. Nucleic Acids Research, 2014, 42, 9195-9208.	14.5	226
15	MicroRNAs miR-17 and miR-20a Inhibit T Cell Activation Genes and Are Under-Expressed in MS Whole Blood. PLoS ONE, 2010, 5, e12132.	2.5	225
16	Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells. Molecular Psychiatry, 2012, 17, 827-840.	7.9	210
17	Dynamic structural remodelling of microglia in health and disease: A review of the models, the signals and the mechanisms. Brain, Behavior, and Immunity, 2014, 37, 1-14.	4.1	193
18	MicroRNA dysregulation in schizophrenia. Neurobiology of Disease, 2012, 46, 263-271.	4.4	180

#	Article	IF	CITATIONS
19	MicroRNA and Posttranscriptional Dysregulation in Psychiatry. Biological Psychiatry, 2015, 78, 231-239.	1.3	153
20	MiR-137: an important player in neural development and neoplastic transformation. Molecular Psychiatry, 2017, 22, 44-55.	7.9	152
21	Target site selection for an RNA-cleaving catalytic DNA. Nature Biotechnology, 1999, 17, 480-486.	17.5	147
22	Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA. NeuroImage, 2020, 218, 116956.	4.2	135
23	Genome-wide supported variant MIR137 and severe negative symptoms predict membership of an impaired cognitive subtype of schizophrenia. Molecular Psychiatry, 2013, 18, 774-780.	7.9	129
24	Optimisation of the 10-23 DNAzyme-substrate pairing interactions enhanced RNA cleavage activity at purine-cytosine target sites. Nucleic Acids Research, 2003, 31, 2883-2889.	14.5	117
25	Brothers in Arms. American Journal of Pathology, 2007, 171, 1079-1088.	3.8	113
26	MicroRNA: Small RNA mediators of the brains genomic response to environmental stress. Progress in Neurobiology, 2016, 143, 61-81.	5.7	102
27	Advancing the use of genome-wide association studies for drug repurposing. Nature Reviews Genetics, 2021, 22, 658-671.	16.3	102
28	Down-regulation of miR-17 family expression in response to retinoic acid induced neuronal differentiation. Cellular Signalling, 2009, 21, 1837-1845.	3.6	98
29	Suppression of Smooth Muscle Cell Proliferation by a c-myc RNA-cleaving Deoxyribozyme. Journal of Biological Chemistry, 1999, 274, 17236-17241.	3.4	92
30	Transcriptome Sequencing Revealed Significant Alteration of Cortical Promoter Usage and Splicing in Schizophrenia. PLoS ONE, 2012, 7, e36351.	2.5	89
31	Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland. International Journal of Cancer, 2009, 124, 2855-2863.	5.1	87
32	Super-enhancers in transcriptional regulation and genome organization. Nucleic Acids Research, 2019, 47, 11481-11496.	14.5	85
33	Gene expression analysis reveals schizophrenia-associated dysregulation ofÂimmune pathways in peripheral blood mononuclear cells. Journal of Psychiatric Research, 2013, 47, 425-437.	3.1	83
34	Catalytic nucleic acids: from lab to applications. Pharmacological Reviews, 2000, 52, 325-47.	16.0	81
35	Transcriptome-wide mega-analyses reveal joint dysregulation of immunologic genes and transcription regulators in brain and blood in schizophrenia. Schizophrenia Research, 2016, 176, 114-124.	2.0	74
36	Circular RNAs are temporospatially regulated throughout development and ageing in the rat. Scientific Reports, 2019, 9, 2564.	3.3	74

#	Article	IF	CITATIONS
37	Catechol-O-methyltransferase (COMT) genotype moderates the effects of childhood trauma on cognition and symptoms in schizophrenia. Journal of Psychiatric Research, 2014, 49, 43-50.	3.1	73
38	Multivariate neuroanatomical classification of cognitive subtypes in schizophrenia: A support vector machine learning approach. NeuroImage: Clinical, 2014, 6, 229-236.	2.7	70
39	Post-Transcriptional Trafficking and Regulation of Neuronal Gene Expression. Molecular Neurobiology, 2012, 45, 99-108.	4.0	62
40	SeqGSEA: a Bioconductor package for gene set enrichment analysis of RNA-Seq data integrating differential expression and splicing. Bioinformatics, 2014, 30, 1777-1779.	4.1	62
41	Alteration of imprinted Dlk1-Dio3 miRNA cluster expression in the entorhinal cortex induced by maternal immune activation and adolescent cannabinoid exposure. Translational Psychiatry, 2014, 4, e452-e452.	4.8	61
42	Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders. Biological Psychiatry, 2022, 91, 102-117.	1.3	61
43	Decreased cortical muscarinic M1 receptors in schizophrenia are associated with changes in gene promoter methylation, mRNA and gene targeting microRNA. Translational Psychiatry, 2013, 3, e230-e230.	4.8	59
44	Proteotranscriptomic Profiling of 231-BR Breast Cancer Cells: Identification of Potential Biomarkers and Therapeutic Targets for Brain Metastasis. Molecular and Cellular Proteomics, 2015, 14, 2316-2330.	3.8	59
45	Circular RNA biogenesis is decreased in postmortem cortical gray matter in schizophrenia and may alter the bioavailability of associated miRNA. Neuropsychopharmacology, 2019, 44, 1043-1054.	5.4	55
46	Epigenomic Dysregulation in Schizophrenia: In Search of Disease Etiology and Biomarkers. Cells, 2020, 9, 1837.	4.1	55
47	Regulation of the tumour suppressor PDCD4 by miR-499 and miR-21 in oropharyngeal cancers. BMC Cancer, 2016, 16, 86.	2.6	51
48	Evidence for Genetic Overlap Between Schizophrenia and Age at First Birth in Women. JAMA Psychiatry, 2016, 73, 497.	11.0	51
49	CX3CR1 is dysregulated in blood and brain from schizophrenia patients. Schizophrenia Research, 2015, 168, 434-443.	2.0	49
50	Expressing functional siRNAs in mammalian cells using convergent transcription. BMC Biotechnology, 2003, 3, 21.	3.3	48
51	The Medical Genome Reference Bank contains whole genome and phenotype data of 2570 healthy elderly. Nature Communications, 2020, 11, 435.	12.8	47
52	Quantitation and three-dimensional reconstruction of Ch4 nucleus in the human basal forebrain. Synapse, 1993, 15, 1-16.	1.2	45
53	Maturation of the Human Dorsolateral Prefrontal Cortex Coincides With a Dynamic Shift in MicroRNA Expression. Schizophrenia Bulletin, 2014, 40, 399-409.	4.3	44
54	Interaction Testing and Polygenic Risk Scoring to Estimate the Association of Common Genetic Variants With Treatment Resistance in Schizophrenia. JAMA Psychiatry, 2022, 79, 260.	11.0	44

#	Article	IF	CITATIONS
55	Gene set enrichment analysis of RNA-Seq data: integrating differential expression and splicing. BMC Bioinformatics, 2013, 14, S16.	2.6	43
56	Regulation of gene expression by microRNA in HCV infection and HCV–mediated hepatocellular carcinoma. Virology Journal, 2014, 11, 64.	3.4	43
57	Expression of NPAS3 in the Human Cortex and Evidence of Its Posttranscriptional Regulation by miR-17 During Development, With Implications for Schizophrenia. Schizophrenia Bulletin, 2013, 39, 396-406.	4.3	41
58	Catalytic DNA: A Novel Tool for Gene Suppression. Current Drug Targets, 2002, 3, 269-79.	2.1	40
59	Gene-microRNA interactions associated with antipsychotic mechanisms and the metabolic side effects of olanzapine. Psychopharmacology, 2013, 227, 67-78.	3.1	39
60	Context-specific microRNA function in developmental complexity. Journal of Molecular Cell Biology, 2013, 5, 73-84.	3.3	39
61	BDNF and the maturation of posttranscriptional regulatory networks in human SH-SY5Y neuroblast differentiation. Frontiers in Cellular Neuroscience, 2014, 8, 325.	3.7	38
62	Combined analysis of exon splicing and genome wide polymorphism data predict schizophrenia risk loci. Journal of Psychiatric Research, 2014, 52, 44-49.	3.1	37
63	Pairwise common variant meta-analyses of schizophrenia with other psychiatric disorders reveals shared and distinct gene and gene-set associations. Translational Psychiatry, 2020, 10, 134.	4.8	37
64	Genetic estimates of correlation and causality between blood-based biomarkers and psychiatric disorders. Science Advances, 2022, 8, eabj8969.	10.3	37
65	Influence of Chromatin Structure on Bleomycinâ^'DNA Interactions at Base Pair Resolution in the Human β-Globin Gene Cluster. Biochemistry, 1996, 35, 8753-8760.	2.5	36
66	A parallel genome-wide mRNA and microRNA profiling of the frontal cortex of HIV patients with and without HIV-associated dementia shows the role of axon guidance and downstream pathways in HIV-mediated neurodegeneration. BMC Genomics, 2012, 13, 677.	2.8	36
67	Genome-wide mRNA and miRNA analysis of peripheral blood mononuclear cells (PBMC) reveals different miRNAs regulating HIV/HCV co-infection. Virology, 2014, 450-451, 336-349.	2.4	35
68	The role of the retinoids in schizophrenia: genomic and clinical perspectives. Molecular Psychiatry, 2020, 25, 706-718.	7.9	35
69	The Influence of Arm Length Asymmetry and Base Substitution on the Activity of the 10-23 DNA Enzyme. Oligonucleotides, 2000, 10, 323-332.	4.3	34
70	Temporally specific <scp>miRNA</scp> expression patterns in the dorsal and ventral striatum of addictionâ€prone rats. Addiction Biology, 2018, 23, 631-642.	2.6	34
71	Preliminary evidence of an interaction between the FOXP2 gene and childhood emotional abuse predicting likelihood of auditory verbal hallucinations in schizophrenia. Journal of Psychiatric Research, 2014, 50, 66-72.	3.1	33
72	Polygenic disruption of retinoid signalling in schizophrenia and a severe cognitive deficit subtype. Molecular Psychiatry, 2020, 25, 719-731.	7.9	33

#	Article	IF	CITATIONS
73	Pharmacological enrichment of polygenic risk for precision medicine in complex disorders. Scientific Reports, 2020, 10, 879.	3.3	33
74	Depolarization-Associated CircRNA Regulate Neural Gene Expression and in Some Cases May Function as Templates for Translation. Cells, 2020, 9, 25.	4.1	32
75	Distinct miRNA expression in dorsal striatal subregions is associated with risk for addiction in rats. Translational Psychiatry, 2015, 5, e503-e503.	4.8	31
76	Altered neural signaling and immune pathways in peripheral blood mononuclear cells of schizophrenia patients with cognitive impairment: A transcriptome analysis. Brain, Behavior, and Immunity, 2016, 53, 194-206.	4.1	30
77	Cell type-specific manifestations of cortical thickness heterogeneity in schizophrenia. Molecular Psychiatry, 2022, 27, 2052-2060.	7.9	29
78	Nucleic acid mutation analysis using catalytic DNA. Nucleic Acids Research, 2000, 28, 9e-9.	14.5	27
79	Do common genotypes of FK506 binding protein 5 (FKBP5) moderate the effects of childhood maltreatment on cognition in schizophrenia and healthy controls?. Journal of Psychiatric Research, 2015, 70, 9-17.	3.1	26
80	The maternal immune activation model uncovers a role for the Arx gene in GABAergic dysfunction in schizophrenia. Brain, Behavior, and Immunity, 2019, 81, 161-171.	4.1	26
81	Alteration of transcriptional networks in the entorhinal cortex after maternal immune activation and adolescent cannabinoid exposure. Brain, Behavior, and Immunity, 2016, 56, 187-196.	4.1	24
82	Schizophrenia-associated MicroRNA–Gene Interactions in the Dorsolateral Prefrontal Cortex. Genomics, Proteomics and Bioinformatics, 2019, 17, 623-634.	6.9	23
83	Alternative mRNA fates identified in microRNA-associated transcriptome analysis. BMC Genomics, 2012, 13, 561.	2.8	22
84	Ontogeny of small RNA in the regulation of mammalian brain development. BMC Genomics, 2014, 15, 777.	2.8	22
85	Antipsychotic drug-associated gene–miRNA interaction in T-lymphocytes. International Journal of Neuropsychopharmacology, 2014, 17, 929-943.	2.1	22
86	Optimal consistency in microRNA expression analysis using reference-gene-based normalization. Molecular BioSystems, 2015, 11, 1235-1240.	2.9	22
87	E6AP gene suppression and characterization with in vitro selected hammerhead ribozymes. Cancer Gene Therapy, 2003, 10, 707-716.	4.6	21
88	Temporospatial guidance of activity-dependent gene expression by microRNA: mechanisms and functional implications for neural plasticity. Nucleic Acids Research, 2019, 47, 533-545.	14.5	21
89	Inhibition of extracellular matrix mediated TGF-β signalling suppresses endometrial cancer metastasis. Oncotarget, 2017, 8, 71400-71417.	1.8	21
90	Developmental suppression of schizophrenia-associated miR-137 alters sensorimotor function in zebrafish. Translational Psychiatry, 2016, 6, e818-e818.	4.8	20

#	Article	IF	CITATIONS
91	Investigation of glycaemic traits in psychiatric disorders using Mendelian randomisation revealed a causal relationship with anorexia nervosa. Neuropsychopharmacology, 2021, 46, 1093-1102.	5.4	20
92	MicroRNA-16 Is Down-Regulated in Mutated FLT3 Expressing Murine Myeloid FDC-P1 Cells and Interacts with Pim-1. PLoS ONE, 2012, 7, e44546.	2.5	18
93	Transcriptomic abnormalities in peripheral blood in bipolar disorder, and discrimination of the major psychoses. Schizophrenia Research, 2020, 217, 124-135.	2.0	18
94	Dysregulation of circRNA expression in the peripheral blood of individuals with schizophrenia and bipolar disorder. Journal of Molecular Medicine, 2021, 99, 981-991.	3.9	18
95	Chemosensitization of Solid Tumors by Inhibition of Bcl-xL Expression Using DNAzyme. Oncotarget, 2014, 5, 9039-9048.	1.8	16
96	Alteration of miRNA-mRNA interactions in lymphocytes of individuals with schizophrenia. Journal of Psychiatric Research, 2019, 112, 89-98.	3.1	15
97	Noncoding RNA Regulation of Dopamine Signaling in Diseases of the Central Nervous System. Frontiers in Molecular Biosciences, 2016, 3, 69.	3.5	14
98	Genetic association and causal inference converge on hyperglycaemia as a modifiable factor to improve lung function. ELife, 2021, 10, .	6.0	14
99	Protein-DNA interactions in the human beta-globin locus control region hypersensitive site-2 as revealed by four nitrogen mustards. Nucleic Acids Research, 1997, 25, 3255-3260.	14.5	13
100	Broad-spectrum and virus-specific nucleic acid-based antivirals against influenza. Frontiers in Bioscience - Scholar, 2010, S2, 791-800.	2.1	13
101	The effect of a muscarinic receptor 1 gene variant on grey matter volume in schizophrenia. Psychiatry Research - Neuroimaging, 2015, 234, 182-187.	1.8	13
102	Substituted 9-aminoacridine-4-carboxamides tethered to platinum(II)diamine complexes: Chemistry, cytotoxicity and DNA sequence selectivity. Journal of Inorganic Biochemistry, 2010, 104, 815-819.	3.5	12
103	Derivation of poly-methylomic profile scores for schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 101, 109925.	4.8	12
104	Detection of Protein-DNA Interactions at Î ² -Globin Gene Cluster in Intact Human Cells Utilizing Hedamycin as DNA-Damaging Agent. DNA and Cell Biology, 1998, 17, 325-333.	1.9	11
105	Design and interpretation of microRNA–reporter gene activity. Analytical Biochemistry, 2013, 437, 164-171.	2.4	11
106	Tetraspanin CD9 is Regulated by miR-518f-5p and Functions in Breast Cell Migration and In Vivo Tumor Growth. Cancers, 2020, 12, 795.	3.7	11
107	Target-Site Selection for the 10–23 DNAzyme <x>. , 2004, 252, 267-278.</x>		10
108	The DNA sequence selectivity of maltolato-containing cisplatin analogues in purified plasmid DNA and in intact human cells. Journal of Inorganic Biochemistry, 2009, 103, 1151-1155.	3.5	10

#	Article	IF	CITATIONS
109	Differential effect of disease-associated ST8SIA2 haplotype on cerebral white matter diffusion properties in schizophrenia and healthy controls. Translational Psychiatry, 2018, 8, 21.	4.8	9
110	Wnt receptor gene FZD1 was associated with schizophrenia in genome-wide SNP analysis of the Australian Schizophrenia Research Bank cohort. Australian and New Zealand Journal of Psychiatry, 2020, 54, 902-908.	2.3	9
111	The MIR137 VNTR rs58335419 Is Associated With Cognitive Impairment in Schizophrenia and Altered Cortical Morphology. Schizophrenia Bulletin, 2021, 47, 495-504.	4.3	9
112	Protein–DNA footprinting of the human ϵ-globin promoter in human intact cells using nitrogen mustard analogues and other DNA-damaging agents. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1445, 245-256.	2.4	8
113	Circulating miRNA Biomarkers for Schizophrenia?. American Journal of Psychiatry, 2015, 172, 1059-1061.	7.2	8
114	Germ cell-specific sustained activation of Wnt signalling perturbs spermatogenesis in aged mice, possibly through non-coding RNAs. Oncotarget, 2016, 7, 85709-85727.	1.8	8
115	miR-518f-5p decreases tetraspanin CD9 protein levels and differentially affects non-tumourigenic prostate and prostate cancer cell migration and adhesion. Oncotarget, 2018, 9, 1980-1991.	1.8	7
116	The genetic architecture of pneumonia susceptibility implicates mucin biology and a relationship with psychiatric illness. Nature Communications, 2022, 13, .	12.8	7
117	The DNA sequence specificity of hedamycin damage determined by ligation-mediated PCR and linear amplification. IUBMB Life, 1998, 46, 267-275.	3.4	6
118	Developmental vitamin D-deficiency increases the expression of microRNAs involved in dopamine neuron development. Brain Research, 2022, 1789, 147953.	2.2	6
119	Comparison of the sequence specificity of cis-diamminedichloroplatinum (II) damage in guanine- and 7-deazaguanine-containing DNA. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1218, 315-321.	2.4	5
120	Understanding Complex Transcriptome Dynamics in Schizophrenia and Other Neurological Diseases Using RNA Sequencing. International Review of Neurobiology, 2014, 116, 127-152.	2.0	5
121	Reply to: New Meta- and Mega-analyses of Magnetic Resonance Imaging Findings in Schizophrenia: Do They Really Increase Our Knowledge About the Nature of the Disease Process?. Biological Psychiatry, 2019, 85, e35-e39.	1.3	5
122	Characterising the Transcriptional and Translational Impact of the Schizophrenia-Associated miR-1271-5p in Neuronal Cells. Cells, 2020, 9, 1014.	4.1	5
123	RNA Modulators of Complex Phenotypes in Mammalian Cells. PLoS ONE, 2009, 4, e4758.	2.5	5
124	RNA-Seq, Bioinformatic Identification of Potential MicroRNA-like Small RNAs in the Edible Mushroom Agaricus bisporus and Experimental Approach for Their Validation. International Journal of Molecular Sciences, 2022, 23, 4923.	4.1	5
125	Homogeneous real-time detection and quantification of nucleic acid amplification using restriction enzyme digestion. Biochemical and Biophysical Research Communications, 2004, 318, 684-690.	2.1	4
126	Recent Patents in Antiviral siRNAs. Recent Patents on Anti-infective Drug Discovery, 2010, 5, 44-57.	0.8	4

#	Article	IF	CITATIONS
127	miRNA Enriched in Human Neuroblast Nuclei Bind the MAZ Transcription Factor and Their Precursors Contain the MAZ Consensus Motif. Frontiers in Molecular Neuroscience, 2017, 10, 259.	2.9	4
128	Common variation in ZNF804A (rs1344706) is not associated with brain morphometry in schizophrenia or healthy participants. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 82, 12-20.	4.8	4
129	Variation in cardiovascular disease risk factors among older adults in the Hunter Community Study cohort: A comparison of diet quality versus polygenic risk score. Journal of Human Nutrition and Dietetics, 2022, 35, 675-688.	2.5	4
130	Transcriptome-Wide Analysis of Interplay between mRNA Stability, Translation and Small RNAs in Response to Neuronal Membrane Depolarization. International Journal of Molecular Sciences, 2020, 21, 7086.	4.1	3
131	Interactive effects of polygenic risk and cognitive subtype on brain morphology in schizophrenia spectrum and bipolar disorders. European Archives of Psychiatry and Clinical Neuroscience, 2022, 272, 1205-1218.	3.2	3
132	Nucleic Acid Sequence Analysis Using DNAzymes. , 2004, 252, 291-302.		2
133	Discovering Functional microRNA-mRNA Regulatory Modules in Heterogeneous Data. Advances in Experimental Medicine and Biology, 2013, 774, 267-290.	1.6	2
134	S194. INVESTIGATING PERIPHERAL MICRORNA-MRNA INTERACTIONS IN SCHIZOPHRENIA. Schizophrenia Bulletin, 2018, 44, S400-S401.	4.3	2
135	Oxidative Stress Impact on the Transcriptome of Differentiating Neuroblastoma Cells: Implication for Psychiatric Disorders. International Journal of Molecular Sciences, 2020, 21, 9182.	4.1	2
136	Detection of polymorphisms using thermal cycling with a single oligonucleotide on a DNA sequencing gel. Human Mutation, 1993, 2, 118-122.	2.5	1
137	Small Interfering RNAs and their Therapeutic Applications in Mitigation of Virus Replication and Pathological Effects in the Respiratory Tract. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2008, 7, 116-121.	1.1	1
138	Primer fabrication using polymerase mediated oligonucleotide synthesis. BMC Genomics, 2009, 10, 344.	2.8	1
139	Advances in non-coding RNA profiling for neurological diseases. Frontiers in Genetics, 2013, 4, 5.	2.3	1
140	Post-Transcriptional Mechanisms of Neuronal Translational Control in Synaptic Plasticity. , 2017, , .		1
141	Small RNA Dysregulation in Neurocognitive and Neuropsychiatric Disorders. , 2017, , 225-245.		1
142	Dideoxy genomic sequencing of a single-copy mammalian gene using more than two hundred cycles of linear amplification. BioTechniques, 1994, 17, 910-4.	1.8	1
143	Perceptions of causal attribution and attitudes to genetic testing among people with schizophrenia and their first-degree relatives. European Journal of Human Genetics, 2022, , .	2.8	1
144	REGULATION OF PSYCHOSIS GENE NPAS3 BY MICRORNA DURING POSTNATAL DEVELOPMENT AND IN SCHIZOPHRENIA. Schizophrenia Research, 2010, 117, 490-491.	2.0	0

#	Article	IF	CITATIONS
145	Poster #102 COMT GENOTYPE MODULATES THE EFFECTS OF CHILDHOOD ADVERSITY ON COGNITION AND SYMPTOMS IN SCHIZOPHRENIA. Schizophrenia Research, 2012, 136, S222.	2.0	0
146	Poster #113 COMT MODULATES THE EFFECTS OF LIFETIME CANNABIS USE ON COGNITION AND SYMPTOM PROFILES IN SCHIZOPHRENIA. Schizophrenia Research, 2012, 136, S226.	2.0	0
147	Poster #114 GENOME-WIDE SUPPORTED VARIANTS (MIR137) PREDICTS MEMBERSHIP OF A COGNITIVE SUBTYPE OF SCHIZOPHRENIA. Schizophrenia Research, 2012, 136, S226.	2.0	Ο
148	Poster #M102 TRANSCRIPTOME ANALYSIS REVEALS DOWN-REGULATED SIGNAL TRANSDUCTION PATHWAYS IN PERIPHERAL BLOOD MONONUCLEAR CELLS FROM SCHIZOPHRENIA PATIENTS WITH COGNITIVE IMPAIRMENT. Schizophrenia Research, 2014, 153, S226-S227.	2.0	0
149	F193. DYSREGULATION OF RETINOID SIGNALLING IN SCHIZOPHRENIA OBSERVED IN WHOLE GENOME SEQUENCE ANALYSIS. Schizophrenia Bulletin, 2018, 44, S296-S296.	4.3	0
150	S188. DYSREGULATION OF CIRCULAR RNA EXPRESSION IN SCHIZOPHRENIA OBSERVED IN POSTMORTEM DORSOLATERAL PREFRONTAL CORTEX. Schizophrenia Bulletin, 2018, 44, S398-S398.	4.3	0
151	SU65IMAGING GENETICS IN PSYCHOSIS STUDY: EPIGENETIC AGE ACCELERATION, TRAUMA, AND PSYCHOSIS OUTCOMES. European Neuropsychopharmacology, 2019, 29, S1302.	0.7	0
152	Small RNA regulators of social behaviour in eutherian mammals. EMBO Reports, 2019, 20, .	4.5	0
153	Novel Implications For RNA In Psychiatric Genetics. European Neuropsychopharmacology, 2019, 29, S719-S720.	0.7	0
154	Genomic Determinants Of miRNA Dysregulation In Schizophrenia. European Neuropsychopharmacology, 2019, 29, S721-S722.	0.7	0
155	M90 ASSOCIATIONS BETWEEN DNA METHYLATION PATTERNS AND CLINICAL STATUS ARE MODERATED BY POLYGENIC RISK FOR SCHIZOPHRENIA. European Neuropsychopharmacology, 2019, 29, S214-S215.	0.7	0
156	M81 INVESTIGATING THE FUNCTIONAL SIGNIFICANCE OF THE SCHIZOPHRENIA-ASSOCIATED DYSREGULATION OF MIR-1271-5P EXPRESSION. European Neuropsychopharmacology, 2019, 29, S210-S211.	0.7	0
157	MicroRNAs and the Response to Stress. , 2021, , 27-36.		0
158	Abstract 5283: Regulation of tetraspanins CD151 and CD9 by micro-RNA in breast and prostate cancers , 2013, , .		0
159	Abstract 4364: Posttranscriptional regulation of tetraspanins CD151 & CD9 in breast & prostate cancers. , 2014, , .		0
160	Protocol for High-Throughput miRNA Profiling of the Rat Brain. Neuromethods, 2016, , 209-241.	0.3	0