Wingkei Ho

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8373260/wingkei-ho-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

82 24,880 156 200 h-index g-index citations papers 28,644 7.63 212 9.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
200	Metal-Organic Frameworks for NO Adsorption and Their Applications in Separation, Sensing, Catalysis, and Biology <i>Small</i> , 2022 , e2105484	11	3
199	Highly efficient photocatalytic degradation for antibiotics and mechanism insight for Bi2S3/g-C3N4 with fast interfacial charges transfer and excellent stability. <i>Arabian Journal of Chemistry</i> , 2022 , 15, 103	6 8 9	3
198	Polyoxometalates-doped Bi2O3/Bi photocatalyst for highly efficient visible-light photodegradation of tetrabromobisphenol A and removal of NO. <i>Chinese Journal of Catalysis</i> , 2022 , 43, 771-781	11.3	2
197	Hierarchical Co3O4-NiO hollow dodecahedron-supported Pt for room-temperature catalytic formaldehyde decomposition. <i>Chemical Engineering Journal</i> , 2022 , 430, 132715	14.7	4
196	Exploring the photocatalytic conversion mechanism of gaseous formaldehyde degradation on TiO-OV surface. <i>Journal of Hazardous Materials</i> , 2022 , 424, 127217	12.8	6
195	In-situ synthesis of ternary heterojunctions via g-C3N4 coupling with noble-metal-free NiS and CdS with efficient visible-light-induced photocatalytic H2 evolution and mechanism insight. International Journal of Hydrogen Energy, 2022, 47, 14063-14076	6.7	1
194	Construction and Activity of an All-Organic Heterojunction Photocatalyst Based on Melem and Pyromellitic Dianhydride <i>ChemSusChem</i> , 2022 , e202200477	8.3	O
193	Unraveling the Reaction Mechanism of HCHO Catalytic Oxidation on Pristine Co3O4 (110) Surface: A Theoretical Study. <i>Catalysts</i> , 2022 , 12, 560	4	
192	Photocatalytic reactive oxygen species generation activity of TiO2 improved by the modification of persistent free radicals. <i>Environmental Science: Nano</i> , 2021 , 8, 3846-3854	7.1	O
191	Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides. <i>Advanced Science</i> , 2021 , 8, e2102376	13.6	3
190	Enhanced solar-to-chemical energy conversion of graphitic carbon nitride by two-dimensional cocatalysts. <i>EnergyChem</i> , 2021 , 3, 100051	36.9	45
189	Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation. <i>Rare Metals</i> , 2021 , 40, 2369-2380	5.5	9
188	ZnxCd1\(\mathbb{Z}\)S quantum dot with enhanced photocatalytic H2-production performance. <i>Chinese Journal of Catalysis</i> , 2021 , 42, 15-24	11.3	49
187	Review on nickel-based adsorption materials for Congo red. <i>Journal of Hazardous Materials</i> , 2021 , 403, 123559	12.8	63
186	Chemical etching fabrication of uniform mesoporous Bi@Bi2O3 nanospheres with enhanced visible light-induced photocatalytic oxidation performance for NOx. <i>Chemical Engineering Journal</i> , 2021 , 406, 126910	14.7	20
185	Enhanced photocatalytic H2 production performance of CdS hollow spheres using C and Pt as bi-cocatalysts. <i>Chinese Journal of Catalysis</i> , 2021 , 42, 743-752	11.3	27
184	Design, Fabrication, and Mechanism of Nitrogen-Doped Graphene-Based Photocatalyst. <i>Advanced Materials</i> , 2021 , 33, e2003521	24	114

183	Near-Infrared-Responsive Photocatalysts Small Methods, 2021, 5, e2001042	12.8	30
182	Improved Oxygen Activation over a Carbon/CoO Nanocomposite for Efficient Catalytic Oxidation of Formaldehyde at Room Temperature. <i>Environmental Science & Environmental Envir</i>	10.3	24
181	Enhancement in the photocatalytic H2 production activity of CdS NRs by Ag2S and NiS dual cocatalysts. <i>Applied Catalysis B: Environmental</i> , 2021 , 288, 119994	21.8	73
180	Tuning the strength of built-in electric field in 2D/2D g-C3N4/SnS2 and g-C3N4/ZrS2 S-scheme heterojunctions by nonmetal doping. <i>Journal of Materiomics</i> , 2021 , 7, 988-997	6.7	26
179	New carbon nitride close to C6N7 with superior visible light absorption for highly efficient photocatalysis. <i>Science Bulletin</i> , 2021 , 66, 1764-1772	10.6	6
178	Transformation of amorphous Bi2O3 to crystal Bi2O2CO3 on Bi nanospheres surface for photocatalytic NOx oxidation: Intensified hot-electron transfer and reactive oxygen species generation. <i>Chemical Engineering Journal</i> , 2021 , 420, 129814	14.7	8
177	Structure-Property relationship in Eketo-enamine-based covalent organic frameworks for highly efficient photocatalytic hydrogen production. <i>Chemical Engineering Journal</i> , 2021 , 419, 129984	14.7	8
176	Interfacial optimization of Z-scheme Ag3PO4/MoS2 nanoflower sphere heterojunction toward synergistic enhancement of visible-light-driven photocatalytic oxygen evolution and degradation of organic pollutant. <i>Journal of Alloys and Compounds</i> , 2021 , 888, 161583	5.7	8
175	Oxygen vacancy-dependent photocatalytic activity of well-defined Bi2Sn2O7\(\text{Nolon}\) hollow nanocubes for NOx removal. <i>Environmental Science: Nano</i> , 2021 , 8, 1927-1933	7.1	3
174	Construction of the 1D Covalent Organic Framework/2D g-CN Heterojunction with High Apparent Quantum Efficiency at 500 nm. <i>ACS Applied Materials & Description</i> (2016), 12, 51555-51562	9.5	14
173	Room-temperature formaldehyde catalytic decomposition. <i>Environmental Science: Nano</i> , 2020 , 7, 3655-	3 7.0 9	20
172	g-C3N4/TiO2 Composite Film in the Fabrication of a Photocatalytic Air-Purifying Pavements. <i>Solar Rrl</i> , 2020 , 4, 2000170	7.1	10
171	A Review of Co3O4-based Catalysts for Formaldehyde Oxidation at Low Temperature: Effect Parameters and Reaction Mechanism. <i>Aerosol Science and Engineering</i> , 2020 , 4, 147-168	1.6	2
170	Photocatalytic CO reduction of C/ZnO nanofibers enhanced by an Ni-NiS cocatalyst. <i>Nanoscale</i> , 2020 , 12, 7206-7213	7.7	49
169	Low-Temperature-Processed Zr/F Co-Doped SnO2 Electron Transport Layer for High-Efficiency Planar Perovskite Solar Cells. <i>Solar Rrl</i> , 2020 , 4, 2000090	7.1	27
168	Novel N/Carbon Quantum Dot Modified MIL-125(Ti) Composite for Enhanced Visible-Light Photocatalytic Removal of NO. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 6470-6478	3.9	14
167	Oxygen vacancy Ingineered EMnOx/activated carbon for room-temperature catalytic oxidation of formaldehyde. <i>Applied Catalysis B: Environmental</i> , 2020 , 278, 119294	21.8	27
166	Graphdiyne: A Brilliant Hole Accumulator for Stable and Efficient Planar Perovskite Solar Cells. <i>Small</i> , 2020 , 16, e1907290	11	35

165	Synthesis and characterization of Bi-BiPO4 nanocomposites as plasmonic photocatalysts for oxidative NO removal. <i>Applied Surface Science</i> , 2020 , 513, 145775	6.7	15
164	C3N4 with engineered three coordinated (N3C) nitrogen vacancy boosts the production of 1O2 for Efficient and stable NO photo-oxidation. <i>Chemical Engineering Journal</i> , 2020 , 389, 124421	14.7	21
163	Reasonable design of Cu2MoS4 heterophase junction for highly efficient photocatalysis. <i>Journal of Alloys and Compounds</i> , 2020 , 826, 154076	5.7	11
162	NiFe-LDH nanosheet/carbon fiber nanocomposite with enhanced anionic dye adsorption performance. <i>Applied Surface Science</i> , 2020 , 511, 145570	6.7	66
161	2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. <i>Applied Catalysis B: Environmental</i> , 2020 , 272, 119006	21.8	298
160	Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. <i>Chinese Journal of Catalysis</i> , 2020 , 41, 9-20	11.3	255
159	Time-resolved characterization of non-thermal plasma-assisted photocatalytic removal of nitric oxide. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 01LT02	3	1
158	Graphene-Based Materials in Planar Perovskite Solar Cells. <i>Solar Rrl</i> , 2020 , 4, 2000502	7.1	20
157	Hierarchical porous Ni/Co-LDH hollow dodecahedron with excellent adsorption property for Congo red and Cr(VI) ions. <i>Applied Surface Science</i> , 2019 , 478, 981-990	6.7	121
156	Effects of H2O2 generation over visible light-responsive Bi/Bi2O2©O3 nanosheets on their photocatalytic NO removal performance. <i>Chemical Engineering Journal</i> , 2019 , 363, 374-382	14.7	41
155	Photocatalytic H2 evolution on graphdiyne/g-C3N4 hybrid nanocomposites. <i>Applied Catalysis B: Environmental</i> , 2019 , 255, 117770	21.8	189
154	Constructing Z-scheme SnO2/N-doped carbon quantum dots/ZnSn(OH)6 nanohybrids with high redox ability for NOx removal under VIS-NIR light. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 15782-1579	3 3	43
153	In Situ Intermediates Determination and Cytotoxicological Assessment in Catalytic Oxidation of Formaldehyde: Implications for Catalyst Design and Selectivity Enhancement under Ambient Conditions. <i>Environmental Science & Environmental Environment</i>	10.3	9
152	Engineering of reduced graphene oxide on nanosheet a-C3N4/perylene imide heterojunction for enhanced photocatalytic redox performance. <i>Applied Catalysis B: Environmental</i> , 2019 , 250, 42-51	21.8	44
151	3D hierarchical graphene oxide-NiFe LDH composite with enhanced adsorption affinity to Congo red, methyl orange and Cr(VI) ions. <i>Journal of Hazardous Materials</i> , 2019 , 369, 214-225	12.8	189
150	Organophosphate flame retardants and bisphenol A in children@urine in Hong Kong: has the burden been underestimated?. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 183, 109502	7	13
149	Active Complexes on Engineered Crystal Facets of MnO-CeO and Scale-Up Demonstration on an Air Cleaner for Indoor Formaldehyde Removal. <i>Environmental Science & Environmental </i>	o § 9:₹	22
148	Urea and Melamine Formaldehyde Resin-Derived Tubular g-CN with Highly Efficient Photocatalytic Performance. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 27934-27943	9.5	33

(2018-2019)

147	Two-dimensional polyimide heterojunctions for the efficient removal of environmental pollutants under visible-light irradiation. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 17163-17169	3.6	3
146	Ultra violet filters in the urine of preschool children and drinking water. <i>Environment International</i> , 2019 , 133, 105246	12.9	5
145	S-Scheme Heterojunction TiO2/CdS Nanocomposite Nanofiber as H2-Production Photocatalyst. <i>ChemCatChem</i> , 2019 , 11, 6301-6309	5.2	167
144	Roles of N-Vacancies over Porous g-CN Microtubes during Photocatalytic NO Removal. <i>ACS Applied Materials & Materi</i>	9.5	119
143	Enhanced Photocatalytic Activity and Selectivity for CO2 Reduction over a TiO2 Nanofibre Mat Using Ag and MgO as Bi-Cocatalyst. <i>ChemCatChem</i> , 2019 , 11, 465-472	5.2	58
142	Protonated g-C3N4/Ti3+ self-doped TiO2 nanocomposite films: Room-temperature preparation, hydrophilicity, and application for photocatalytic NO removal. <i>Applied Catalysis B: Environmental</i> , 2019 , 240, 122-131	21.8	97
141	Hierarchical porous Al2O3@ZnO core-shell microfibres with excellent adsorption affinity for Congo red molecule. <i>Applied Surface Science</i> , 2019 , 473, 251-260	6.7	46
140	Review on Metal Sulphide-based Z-scheme Photocatalysts. <i>ChemCatChem</i> , 2019 , 11, 1394-1411	5.2	292
139	Hierarchically CdSAg2S nanocomposites for efficient photocatalytic H2 production. <i>Applied Surface Science</i> , 2019 , 470, 196-204	6.7	141
138	Highly enhanced visible-light photocatalytic NO x purification and conversion pathway on self-structurally modified g-C 3 N 4 nanosheets. <i>Science Bulletin</i> , 2018 , 63, 609-620	10.6	51
137	Synthesis of a Bi2O2CO3/ZnFe2O4 heterojunction with enhanced photocatalytic activity for visible light irradiation-induced NO removal. <i>Applied Catalysis B: Environmental</i> , 2018 , 234, 70-78	21.8	132
136	Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. <i>Construction and Building Materials</i> , 2018 , 172, 476-487	6.7	157
135	Phosphorus flame retardants and Bisphenol A in indoor dust and PM in kindergartens and primary schools in Hong Kong. <i>Environmental Pollution</i> , 2018 , 235, 365-371	9.3	38
134	Biocompatible FeOOH-Carbon quantum dots nanocomposites for gaseous NO removal under visible light: Improved charge separation and High selectivity. <i>Journal of Hazardous Materials</i> , 2018 , 354, 54-62	12.8	94
133	Unraveling the mechanisms of room-temperature catalytic degradation of indoor formaldehyde and its biocompatibility on colloidal TiO2-supported MnOx©eO2. <i>Environmental Science: Nano</i> , 2018 , 5, 1130-1139	7.1	17
132	Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C 3 N 4 nanosheets. <i>Applied Surface Science</i> , 2018 , 430, 380-389	6.7	124
131	Synthesis of SrFexTi1-xO3-Ihanocubes with tunable oxygen vacancies for selective and efficient photocatalytic NO oxidation. <i>Applied Catalysis B: Environmental</i> , 2018 , 239, 1-9	21.8	36
130	Review on nanoscale Bi-based photocatalysts. <i>Nanoscale Horizons</i> , 2018 , 3, 464-504	10.8	319

129	Self-assembly synthesis of boron-doped graphitic carbon nitride hollow tubes for enhanced photocatalytic NOx removal under visible light. <i>Applied Catalysis B: Environmental</i> , 2018 , 239, 352-361	21.8	97
128	In situ g-C3N4 self-sacrificial synthesis of a g-C3N4/LaCO3OH heterostructure with strong interfacial charge transfer and separation for photocatalytic NO removal. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 972-981	13	42
127	Graphene-induced formation of visible-light-responsive SnO2-Zn2SnO4 Z-scheme photocatalyst with surface vacancy for the enhanced photoreactivity towards NO and acetone oxidation. <i>Chemical Engineering Journal</i> , 2018 , 336, 200-210	14.7	65
126	Direct Z-scheme porous g-C3N4/BiOI heterojunction for enhanced visible-light photocatalytic activity. <i>Journal of Alloys and Compounds</i> , 2018 , 766, 841-850	5.7	87
125	Fabrication of TiO 2 nanorod assembly grafted rGO (rGO@TiO 2 -NR) hybridized flake-like photocatalyst. <i>Applied Surface Science</i> , 2017 , 391, 218-227	6.7	65
124	Environment-Friendly Carbon Quantum Dots/ZnFeO Photocatalysts: Characterization, Biocompatibility, and Mechanisms for NO Removal. <i>Environmental Science & Documental Science & D</i>	10.3	194
123	Peroxymonosulfate activated by amorphous particulate MnO2 for mineralization of benzene gas: Redox reaction, weighting analysis, and numerical modelling. <i>Chemical Engineering Journal</i> , 2017 , 316, 61-69	14.7	10
122	Effect of mesoporous g-C3N4 substrate on catalytic oxidation of CO over Co3O4. <i>Applied Surface Science</i> , 2017 , 401, 333-340	6.7	46
121	Enhanced photocatalytic removal of NO over titania/hydroxyapatite (TiO2/HAp) composites with improved adsorption and charge mobility ability. <i>RSC Advances</i> , 2017 , 7, 24683-24689	3.7	30
120	Enhanced visible-light photo-oxidation of nitric oxide using bismuth-coupled graphitic carbon nitride composite heterostructures. <i>Chinese Journal of Catalysis</i> , 2017 , 38, 321-329	11.3	78
119	Improving photoanodes to obtain highly efficient dye-sensitized solar cells: a brief review. <i>Materials Horizons</i> , 2017 , 4, 319-344	14.4	129
118	Facile Synthesis of ZnxCd1-xS Solid Solution Microspheres through Ultrasonic Spray Pyrolysis for Improved Photocatalytic Activity. <i>Journal of Nanomaterials</i> , 2017 , 2017, 1-8	3.2	2
117	Controllable Synthesis of CoreBhell Bi@Amorphous Bi2O3 Nanospheres with Tunable Optical and Photocatalytic Activity for NO Removal. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 102.	54-902	5 8 8
116	Veterinary antibiotics in food, drinking water, and the urine of preschool children in Hong Kong. <i>Environment International</i> , 2017 , 108, 246-252	12.9	100
115	Review on the improvement of the photocatalytic and antibacterial activities of ZnO. <i>Journal of Alloys and Compounds</i> , 2017 , 727, 792-820	5.7	575
114	Three-Dimensional Bi(_{5})O(_{7})I Photocatalysts for Efficient Removal of NO in Air Under Visible Light. <i>Aerosol Science and Engineering</i> , 2017 , 1, 33-40	1.6	3
113	Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst. <i>Applied Surface Science</i> , 2017 , 391, 175-183	6.7	477
112	Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): An efficient visible-light-driven Z-scheme hybridized photocatalyst. <i>Applied Catalysis B: Environmental</i> , 2017 , 202, 611-619	21.8	238

(2016-2017)

111	Perovskite LaFeO3-SrTiO3 composite for synergistically enhanced NO removal under visible light excitation. <i>Applied Catalysis B: Environmental</i> , 2017 , 204, 346-357	21.8	102
110	Highly photoreactive TiO 2 hollow microspheres with super thermal stability for acetone oxidation. <i>Chinese Journal of Catalysis</i> , 2017 , 38, 2085-2093	11.3	36
109	A review on TiO 2 -based Z-scheme photocatalysts. <i>Chinese Journal of Catalysis</i> , 2017 , 38, 1936-1955	11.3	387
108	High-surface area mesoporous Pt/TiOlhollow chains for efficient formaldehyde decomposition at ambient temperature. <i>Journal of Hazardous Materials</i> , 2016 , 301, 522-30	12.8	133
107	. Industrial & Engineering Chemistry Research, 2016 , 55, 10609-10617	3.9	24
106	In situ Fabrication of Bi2O3/(BiO)2CO3 Nanoplate Heterojunctions with Tunable Optical Property and Photocatalytic Activity. <i>Scientific Reports</i> , 2016 , 6, 23435	4.9	51
105	Fabrication and enhanced CO2 reduction performance of N-self-doped TiO2 microsheet photocatalyst by bi-cocatalyst modification. <i>Journal of CO2 Utilization</i> , 2016 , 16, 442-449	7.6	86
104	Plasmonic Bi/ZnWO4 Microspheres with Improved Photocatalytic Activity on NO Removal under Visible Light. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 6912-6920	8.3	74
103	Fabrication of Bi2O2CO3/g-C3N4 heterojunctions for efficiently photocatalytic NO in air removal: In-situ self-sacrificial synthesis, characterizations and mechanistic study. <i>Applied Catalysis B: Environmental</i> , 2016 , 199, 123-133	21.8	174
102	Photocatalytic selective oxidation of phenol to produce dihydroxybenzenes in a TiO2/UV system: Hydroxyl radical versus hole. <i>Applied Catalysis B: Environmental</i> , 2016 , 199, 405-411	21.8	80
101	Hierarchically porous NiOAl2O3 nanocomposite with enhanced Congo red adsorption in water. <i>RSC Advances</i> , 2016 , 6, 10272-10279	3.7	56
100	Visible-Light-Active Plasmonic Ag-SrTiO3 Nanocomposites for the Degradation of NO in Air with High Selectivity. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 4165-74	9.5	107
99	Simultaneous excitation of PdCl2 hybrid mesoporous g-C3N4 molecular/solid-state photocatalysts for enhancing the visible-light-induced oxidative removal of nitrogen oxides. <i>Applied Catalysis B: Environmental</i> , 2016 , 184, 174-181	21.8	33
98	Hierarchical porous ZnWO4 microspheres synthesized by ultrasonic spray pyrolysis: Characterization, mechanistic and photocatalytic NO removal studies. <i>Applied Catalysis A: General</i> , 2016 , 515, 170-178	5.1	50
97	Distribution of bacteria in inhalable particles and its implications for health risks in kindergarten children in Hong Kong. <i>Atmospheric Environment</i> , 2016 , 128, 268-275	5.3	13
96	Halogen poisoning effect of Pt-TiO2 for formaldehyde catalytic oxidation performance at room temperature. <i>Applied Surface Science</i> , 2016 , 364, 808-814	6.7	109
95	Hierarchical NiO-SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water. <i>Journal of Colloid and Interface Science</i> , 2016 , 466, 238-46	9.3	105
94	Self doping promoted photocatalytic removal of no under visible light with bi2moo6: Indispensable role of superoxide ions. <i>Applied Catalysis B: Environmental</i> , 2016 , 182, 316-325	21.8	127

93	Performance and mechanism of visible-light-induced plasmonic photocatalytic purification of NO with Ag/AgX. <i>Chinese Science Bulletin</i> , 2016 , 61, 3482-3489	2.9	2
92	Recent Development of Plasmonic Resonance-Based Photocatalysis and Photovoltaics for Solar Utilization. <i>Molecules</i> , 2016 , 21,	4.8	47
91	Thiourea-Modified TiO2 Nanorods with Enhanced Photocatalytic Activity. <i>Molecules</i> , 2016 , 21, 181	4.8	17
90	Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration. <i>Applied Surface Science</i> , 2015 , 358, 356-362	6.7	85
89	Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. <i>Applied Catalysis B: Environmental</i> , 2015 , 176-177, 44-52	21.8	704
88	Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. <i>Applied Surface Science</i> , 2015 , 358, 393-403	6.7	280
87	Enhanced visible-light-driven photocatalytic removal of NO: Effect on layer distortion on g-C3N4 by H2 heating. <i>Applied Catalysis B: Environmental</i> , 2015 , 179, 106-112	21.8	105
86	Copolymerization with 2,4,6-triaminopyrimidine for the rolling-up the layer structure, tunable electronic properties, and photocatalysis of g-C3N4. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7,5497-505	9.5	204
85	Facile synthesis of porous graphene-like carbon nitride (C6N9H3) with excellent photocatalytic activity for NO removal. <i>Applied Catalysis B: Environmental</i> , 2015 , 174-175, 477-485	21.8	138
84	Isoelectric point and adsorption activity of porous g-C3N4. <i>Applied Surface Science</i> , 2015 , 344, 188-195	6.7	569
83	The role and synergistic effect of the light irradiation and H2O2 in photocatalytic inactivation of Escherichia coli. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2015 , 149, 164-71	6.7	16
82	Controllable synthesis of phosphate-modified BiPO4 nanorods with high photocatalytic activity: surface hydroxyl groups concentrations effects. <i>RSC Advances</i> , 2015 , 5, 99712-99721	3.7	21
81	Graphene-Based Photocatalysts for CO2 Reduction to Solar Fuel. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 4244-51	6.4	308
80	Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23435-23441	13	373
79	Photocatalytic activity of Ag2MO4 (M = Cr, Mo, W) photocatalysts. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20153-20166	13	130
78	Water-assisted production of honeycomb-like g-C3N4 with ultralong carrier lifetime and outstanding photocatalytic activity. <i>Nanoscale</i> , 2015 , 7, 2471-9	7.7	288
77	Mass-Controlled Direct Synthesis of Graphene-like Carbon Nitride Nanosheets with Exceptional High Visible Light Activity. Less is Better. <i>Scientific Reports</i> , 2015 , 5, 14643	4.9	57
76	Hierarchical Pt/NiO Hollow Microspheres with Enhanced Catalytic Performance. <i>ChemNanoMat</i> , 2015 , 1, 58-67	3.5	69

75	A Hierarchical Z-Scheme CdS-WO3 Photocatalyst with Enhanced CO2 Reduction Activity. <i>Small</i> , 2015 , 11, 5262-71	11	578
74	Nanocasting of Periodic Mesoporous Materials as an Effective Strategy to Prepare Mixed Phases of Titania. <i>Molecules</i> , 2015 , 20, 21881-95	4.8	6
73	Photocatalytic NO removal on BiOI surface: The change from nonselective oxidation to selective oxidation. <i>Applied Catalysis B: Environmental</i> , 2015 , 168-169, 490-496	21.8	76
72	Efficient photocatalytic degradation of NO by ceramic foam air filters coated with mesoporous TiO2 thin films. <i>Chinese Journal of Catalysis</i> , 2015 , 36, 2109-2118	11.3	10
71	Enhanced catalytic activity of hierarchically macro-/mesoporous Pt/TiO2 toward room-temperature decomposition of formaldehyde. <i>Catalysis Science and Technology</i> , 2015 , 5, 2366-2377	5.5	79
70	Facile fabrication of porous Cr-doped SrTiO3 nanotubes by electrospinning and their enhanced visible-light-driven photocatalytic properties. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 3935-3943	13	50
69	New insights into how RGO influences the photocatalytic performance of BiOIO3/RGO nanocomposites under visible and UV irradiation. <i>Journal of Colloid and Interface Science</i> , 2015 , 447, 16-	2 43	64
68	Synthesis and adsorption performance of Mg(OH)2 hexagonal nanosheetgraphene oxide composites. <i>Applied Surface Science</i> , 2015 , 332, 121-129	6.7	99
67	The mechanism of enhanced visible light photocatalysis with micro-structurally optimized and graphene oxide coupled(BiO)₂CO₃. <i>Chinese Science Bulletin</i> , 2015 , 60, 1915-1923	2.9	2
66	???C₃N₄????????????????????. <i>Chinese Science Bulletin</i> , 2015 , 60, 3221-3229	2.9	2
65	Mechanism of NO Photocatalytic Oxidation on g-C3-N4 Was Changed by Pd-QDs Modification. [Corrected]. <i>Molecules</i> , 2015 , 21, E36	4.8	21
64	Growth of BiOBr nanosheets on C3N4 nanosheets to construct two-dimensional nanojunctions with enhanced photoreactivity for NO removal. <i>Journal of Colloid and Interface Science</i> , 2014 , 418, 317-23	9.3	110
63	Noble Metal-Like Behavior of Plasmonic Bi Particles as a Cocatalyst Deposited on (BiO)2CO3 Microspheres for Efficient Visible Light Photocatalysis. <i>ACS Catalysis</i> , 2014 , 4, 4341-4350	13.1	391
62	Synthesis of mesoporous polymeric carbon nitride exhibiting enhanced and durable visible light photocatalytic performance. <i>Science Bulletin</i> , 2014 , 59, 688-698		27
61	Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination. <i>Chemical Communications</i> , 2014 , 50, 4338-40	5.8	153
60	Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination. <i>Environmental Science & Environmental Scienc</i>	10.3	355
59	Enhancing the photocatalytic activity of bulk g-CNIby introducing mesoporous structure and hybridizing with graphene. <i>Journal of Colloid and Interface Science</i> , 2014 , 436, 29-36	9.3	74
58	Nanomaterials for Environmental Applications. <i>Journal of Nanomaterials</i> , 2014 , 2014, 1-4	3.2	16

57	Hydrothermal fabrication of N-doped (BiO)2CO3: Structural and morphological influence on the visible light photocatalytic activity. <i>Applied Surface Science</i> , 2014 , 319, 256-264	6.7	26
56	Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. <i>Journal of Colloid and Interface Science</i> , 2013 , 401, 70-9	9.3	260
55	In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 11392-401	9.5	872
54	CdIn2S4 microsphere as an efficient visible-light-driven photocatalyst for bacterial inactivation: Synthesis, characterizations and photocatalytic inactivation mechanisms. <i>Applied Catalysis B: Environmental</i> , 2013 , 129, 482-490	21.8	141
53	Synthesis of flower-like, pinon-like and faceted nanoplates (BiO)2CO3 micro/nanostructures with morphology-dependent photocatalytic activity. <i>Materials Chemistry and Physics</i> , 2013 , 142, 381-386	4.4	16
52	(NH4)2CO3 mediated hydrothermal synthesis of N-doped (BiO)2CO3 hollow nanoplates microspheres as high-performance and durable visible light photocatalyst for air cleaning. <i>Chemical Engineering Journal</i> , 2013 , 214, 198-207	14.7	74
51	CoreShell FeBe2O3 nanostructures as effective persulfate activator for degradation of methyl orange. <i>Separation and Purification Technology</i> , 2013 , 108, 159-165	8.3	75
50	Aerosol flow synthesis of N, Si-codoped TiO2 hollow microspheres with enhanced visible-light driven photocatalytic performance. <i>Catalysis Communications</i> , 2012 , 29, 189-193	3.2	15
49	Controlled synthesis, growth mechanism and highly efficient solar photocatalysis of nitrogen-doped bismuth subcarbonate hierarchical nanosheets architectures. <i>Dalton Transactions</i> , 2012 , 41, 8270-84	4.3	62
48	One-pot template-free synthesis, growth mechanism and enhanced photocatalytic activity of monodisperse (BiO)2CO3 hierarchical hollow microspheres self-assembled with single-crystalline nanosheets. <i>CrystEngComm</i> , 2012 , 14, 3534	3.3	72
47	A stable single-crystal Bi3NbO7 nanoplates superstructure for effective visible-light-driven photocatalytic removal of nitric oxide. <i>Applied Surface Science</i> , 2012 , 263, 266-272	6.7	25
46	Novel in situ N-doped (BiO)2CO3 hierarchical microspheres self-assembled by nanosheets as efficient and durable visible light driven photocatalyst. <i>Langmuir</i> , 2012 , 28, 766-73	4	201
45	Fabrication of Bi-DopedTiO2Spheres with Ultrasonic Spray Pyrolysis and Investigation of Their Visible-Light Photocatalytic Properties. <i>Journal of Nanotechnology</i> , 2012 , 2012, 1-7	3.5	12
44	Template-free synthesis of ternary sulfides submicrospheres as visible light photocatalysts by ultrasonic spray pyrolysis. <i>Catalysis Science and Technology</i> , 2012 , 2, 1825	5.5	19
43	Efficient Visible Light Photocatalytic Oxidation of NO on F- and N-Codoped SphericalTiO2Synthesized via Ultrasonic Spray Pyrolysis. <i>Journal of Nanomaterials</i> , 2012 , 2012, 1-9	3.2	4
42	Facile Synthesis of Visible-Light-Activated F-Doped TiO2 Hollow Spheres by Ultrasonic Spray Pyrolysis. <i>Science of Advanced Materials</i> , 2012 , 4, 863-868	2.3	9
41	Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: one-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air. <i>Journal of Hazardous Materials</i> , 2011 , 195, 346-54	12.8	142
40	Application Research at the Nano and Advanced Materials Institute. <i>IEEE Nanotechnology Magazine</i> , 2011 , 5, 13-22	1.7	1

39	Efficient Visible Light Photocatalytic Removal of NO with BiOBr-Graphene Nanocomposites. Journal of Physical Chemistry C, 2011 , 115, 25330-25337	3.8	185
38	Template-free fabrication and growth mechanism of uniform (BiO)2CO3 hierarchical hollow microspheres with outstanding photocatalytic activities under both UV and visible light irradiation. <i>Journal of Materials Chemistry</i> , 2011 , 21, 12428		133
37	DRIFT Study of the SO2 Effect on Low-Temperature SCR Reaction over Fellm/TiO2. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 4961-4965	3.8	191
36	Ultrasonic Spray Pyrolysis Synthesis of Porous Bi2WO6 Microspheres and Their Visible-Light-Induced Photocatalytic Removal of NO. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 6342-63	349 ⁸	182
35	Photocatalytic removal of NO and HCHO over nanocrystalline Zn2SnO4 microcubes for indoor air purification. <i>Journal of Hazardous Materials</i> , 2010 , 179, 141-50	12.8	63
34	Characterization of winter airborne particles at Emperor Qin © Terra-cotta Museum, China. <i>Science of the Total Environment</i> , 2009 , 407, 5319-27	10.2	26
33	Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation. <i>Journal of Hazardous Materials</i> , 2009 , 169, 77-87	12.8	150
32	Aerosol-assisted flow synthesis of B-doped, Ni-doped and BNi-codoped TiO2 solid and hollow microspheres for photocatalytic removal of NO. <i>Applied Catalysis B: Environmental</i> , 2009 , 89, 398-405	21.8	91
31	Interfacial Hydrothermal Synthesis of [email@rotected]2O CoreBhell Microspheres with Enhanced Visible-Light-Driven Photocatalytic Activity. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 20896-20902	3.8	196
30	Atmospheric deterioration of Qin brick in an environmental chamber at Emperor Qin@Terracotta Museum, China. <i>Journal of Archaeological Science</i> , 2009 , 36, 2578-2583	2.9	10
29	Growth-differentiation factor-8 (GDF-8) in the uterus: its identification and functional significance in the golden hamster. <i>Reproductive Biology and Endocrinology</i> , 2009 , 7, 134	5	4
28	Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light. <i>Environmental Science & Environmental S</i>	10.3	396
27	Vehicular emission of volatile organic compounds (VOCs) from a tunnel study in Hong Kong. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 7491-7504	6.8	113
26	Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NOx. <i>Langmuir</i> , 2008 , 24, 3510-6	4	269
25	Photocatalytic activity and photo-induced hydrophilicity of mesoporous TiO2 thin films coated on aluminum substrate. <i>Applied Catalysis B: Environmental</i> , 2007 , 73, 135-143	21.8	36
24	Gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) emissions from commercial restaurants in Hong Kong. <i>Journal of Environmental Monitoring</i> , 2007 , 9, 1402-9		41
23	Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. Journal of Solid State Chemistry, 2006 , 179, 1171-1176	3.3	224
22	Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles. <i>Journal of Molecular Catalysis A</i> , 2006 , 247, 268-274		135

21	Preparation, characterization and photocatalytic activity of in situ Fe-doped TiO2 thin films. <i>Thin Solid Films</i> , 2006 , 496, 273-280	2.2	134
20	Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. <i>Chemical Communications</i> , 2006 , 1115-7	5.8	343
19	Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. <i>Environmental Science & Environmental Science & </i>	10.3	701
18	Photocatalytic TiO2/glass nanoflake array films. <i>Langmuir</i> , 2005 , 21, 3486-92	4	38
17	Preparation and Photocatalytic Behavior of MoS2 and WS2 Nanocluster Sensitized TiO2. <i>Langmuir</i> , 2004 , 20, 5865-5869	4	486
16	Sono- and Photochemical Routes for the Formation of Highly Dispersed Gold Nanoclusters in Mesoporous Titania Films. <i>Advanced Functional Materials</i> , 2004 , 14, 1178-1183	15.6	77
15	Preparation of a highly active nanocrystalline TiO2 photocatalyst from titanium oxo cluster precursor. <i>Journal of Solid State Chemistry</i> , 2004 , 177, 2584-2590	3.3	45
14	A simple and general method for the synthesis of multicomponent Na2V6O16.3H2O single-crystal nanobelts. <i>Journal of the American Chemical Society</i> , 2004 , 126, 3422-3	16.4	149
13	Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. <i>Langmuir</i> , 2004 , 20, 5865-9	4	23
12	Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. <i>Environmental Science & Environmental Sci</i>	10.3	332
11	Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. <i>Journal of Catalysis</i> , 2003 , 217, 69-69	7.3	468
10	Effects of alcohol content and calcination temperature on the textural properties of bimodally mesoporous titania. <i>Applied Catalysis A: General</i> , 2003 , 255, 309-320	5.1	111
9	The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 13871-	13879	1026
8	Effects of Trifluoroacetic Acid Modification on the Surface Microstructures and Photocatalytic Activity of Mesoporous TiO2 Thin Films. <i>Langmuir</i> , 2003 , 19, 3889-3896	4	149
7	Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2002 , 148, 263-271	4.7	162
6	Light-induced super-hydrophilicity and photocatalytic activity of mesoporous TiO2 thin films. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2002 , 148, 331-339	4.7	121
5	Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. <i>Chemistry of Materials</i> , 2002 , 14, 3808-3816	9.6	1906
4	Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films. <i>New Journal of Chemistry</i> , 2002 , 26, 607-613	3.6	229

LIST OF PUBLICATIONS

3	Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. <i>Chemical Communications</i> , 2001 , 1942-3	5.8	289
2	TiO2/In2S3 S-scheme photocatalyst with enhanced H2O2-production activity. <i>Nano Research</i> ,1	10	15
1	g-C3N4-Based 2D/2D Composite Heterojunction Photocatalyst. <i>Small Structures</i> ,2100086	8.7	19