Daniel Mandler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8373259/publications.pdf Version: 2024-02-01

		19608	38300
295	12,519	61	95
papers	citations	h-index	g-index
312	312	312	12090
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chemical Society Reviews, 2019, 48, 2518-2534.	18.7	483
2	Self-assembled monolayers in electroanalytical chemistry: application of .omegamercapto carboxylic acid monolayers for the electrochemical detection of dopamine in the presence of a high concentration of ascorbic acid. Analytical Chemistry, 1993, 65, 37-41.	3.2	360
3	Scanning electrochemical microscopy - a new technique for the characterization and modification of surfaces. Accounts of Chemical Research, 1990, 23, 357-363.	7.6	314
4	Exciting new directions in the intersection of functionalized sol–gel materials with electrochemistry. Journal of Materials Chemistry, 2005, 15, 3663.	6.7	267
5	Electrodeposition of Methylated Sol-Gel Films on Conducting Surfaces. Advanced Materials, 1999, 11, 384-388.	11.1	257
6	Selective Determination of Cr(VI) by a Self-Assembled Monolayer-Based Electrode. Analytical Chemistry, 1997, 69, 894-897.	3.2	227
7	Applications of self-assembled monolayers in electroanalytical chemistry. Electroanalysis, 1996, 8, 207-213.	1.5	210
8	Parathion Sensor Based on Molecularly Imprinted Solâ^'Gel Films. Analytical Chemistry, 2004, 76, 120-126.	3.2	208
9	Hierarchical electrodes of NiCo ₂ S ₄ nanosheets-anchored sulfur-doped Co ₃ O ₄ nanoneedles with advanced performance for battery-supercapacitor hybrid devices. Journal of Materials Chemistry A, 2019, 7, 3228-3237.	5.2	190
10	Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nature Communications, 2021, 12, 3634.	5.8	186
11	Electrodeposition of sol–gel films on Al for corrosion protection. Corrosion Science, 2003, 45, 2893-2904.	3.0	164
12	Photosensitized reduction of carbon dioxide to methane and hydrogen evolution in the presence of ruthenium and osmium colloids: strategies to design selectivity of products distribution. Journal of the American Chemical Society, 1987, 109, 6080-6086.	6.6	154
13	Self-assembled monolayers in electroanalytical chemistry: Application of .omegamercaptocarboxylic acid monolayers for electrochemical determination of ultralow levels of cadmium(II). Analytical Chemistry, 1994, 66, 58-63.	3.2	150
14	Self-assembled monolayers (SAMs) for electrochemical sensing. Journal of Solid State Electrochemistry, 2011, 15, 1535-1558.	1.2	149
15	Application of nanoparticles for the enhancement of latent fingerprints. Chemical Communications, 2007, , 1142.	2.2	147
16	Side by Side Battery Technologies with Lithiumâ€lon Based Batteries. Advanced Energy Materials, 2020, 10, 2000089.	10.2	127
17	Electrochemically Controlled Drug-Mimicking Protein Release from Iron-Alginate Thin-Films Associated with an Electrode. ACS Applied Materials & Interfaces, 2012, 4, 466-475.	4.0	124
18	Manganese doped Co3O4 mesoporous nanoneedle array for long cycle-stable supercapacitors. Applied Surface Science, 2019, 469, 941-950	3.1	124

#	Article	IF	CITATIONS
19	Nanostructured electrochromic films by inkjet printing on large area and flexible transparent silver electrodes. Nanoscale, 2014, 6, 4572.	2.8	120
20	Bio-inspired antifouling approaches: the quest towards non-toxic and non-biocidal materials. Current Opinion in Biotechnology, 2016, 39, 48-55.	3.3	116
21	Scanning Electrochemical Microscopy: The Application of the Feedback Mode for High Resolution Copper Etching. Journal of the Electrochemical Society, 1989, 136, 3143-3144.	1.3	110
22	Characterization of palladiumbetacyclodextrin colloids as catalysts in the photosensitized reduction of bicarbonate to formate. Journal of the American Chemical Society, 1989, 111, 1330-1336.	6.6	110
23	Solar light induced formation of chiral 2-butanol in an enzyme-catalyzed chemical system. Journal of the American Chemical Society, 1984, 106, 5352-5353.	6.6	109
24	High Resolution Etching of Semiconductors by the Feedback Mode of the Scanning Electrochemical Microscope. Journal of the Electrochemical Society, 1990, 137, 2468-2472.	1.3	109
25	Electrochemical Detection of Low Concentrations of Mercury in Water Using Gold Nanoparticles. Analytical Chemistry, 2015, 87, 5148-5155.	3.2	104
26	Label-free femtomolar cancer biomarker detection in human serum using graphene-coated surface plasmon resonance chips. Biosensors and Bioelectronics, 2017, 89, 606-611.	5.3	104
27	Scanning Tunneling Microscopy Study of l-Cysteine on Au(111). Langmuir, 1996, 12, 2849-2852.	1.6	100
28	Chiral Electrochemical Recognition by Very Thin Molecularly Imprinted Solâ^'Gel Films. Langmuir, 2005, 21, 7842-7847.	1.6	99
29	"Writing–Reading–Erasing―on Tungsten Oxide Films Using the Scanning Electrochemical Microscope. Advanced Materials, 2000, 12, 330-333.	11.1	97
30	Photochemical fixation of carbon dioxide: enzymic photosynthesis of malic, aspartic, isocitric, and formic acids in artificial media. Journal of the Chemical Society Perkin Transactions II, 1988, , 997.	0.9	96
31	Peptideâ€Based Approaches to Fight Biofouling. Advanced Materials Interfaces, 2018, 5, 1800073.	1.9	94
32	Synthesis, coating, and drug-release of hydroxyapatite nanoparticles loaded with antibiotics. Journal of Materials Chemistry B, 2017, 5, 7819-7830.	2.9	87
33	Switch of the Rate-Determining Step of Water Oxidation by Spin-Selected Electron Transfer in Spinel Oxides. Chemistry of Materials, 2019, 31, 8106-8111.	3.2	87
34	A New Approach to the High Resolution Electrodeposition of Metals via the Feedback Mode of the Scanning Electrochemical Microscope. Journal of the Electrochemical Society, 1990, 137, 1079-1086.	1.3	85
35	Patterning and Characterization of Surfaces with Organic and Biological Molecules by the Scanning Electrochemical Microscope. Analytical Chemistry, 2000, 72, 3431-3435.	3.2	82
36	"Nano to nano―electrodeposition of WO ₃ crystalline nanoparticles for electrochromic coatings. Journal of Materials Chemistry A, 2014, 2, 16224-16229.	5.2	81

#	Article	IF	CITATIONS
37	Simple sol–gel process and one-step annealing of vanadium dioxide thin films: Synthesis and thermochromic properties. Thin Solid Films, 2013, 534, 594-598.	0.8	80
38	Preparation and Characterization ofn-Alkanoic Acid Self-Assembled Monolayers Adsorbed on 316L Stainless Steel. Langmuir, 2004, 20, 7499-7506.	1.6	79
39	Layer-by-Layer Assembly of PEDOT:PSS and WO3 Nanoparticles: Enhanced Electrochromic Coloration Efficiency and Mechanism Studies by Scanning Electrochemical Microscopy. Electrochimica Acta, 2015, 174, 57-65.	2.6	78
40	Disentangling faradaic, pseudocapacitive, and capacitive charge storage: A tutorial for the characterization of batteries, supercapacitors, and hybrid systems. Electrochimica Acta, 2022, 412, 140072.	2.6	78
41	Microwriting of Cold Patterns with the Scanning Electrochemical Microscope. Journal of the Electrochemical Society, 1995, 142, L82-L84.	1.3	77
42	Visualization of Latent Fingermarks by Nanotechnology: Reversed Development on Paper—A Remedy to the Variation in Sweat Composition. Angewandte Chemie - International Edition, 2012, 51, 12224-12227.	7.2	77
43	Fabrication of nanoelectrode ensembles by electrodepositon of Au nanoparticles on single-layer graphene oxide sheets. Nanoscale, 2012, 4, 2728.	2.8	76
44	One-pot sequential electrochemical deposition of multilayer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid)/tungsten trioxide hybrid films and their enhanced electrochromic properties. Journal of Materials Chemistry A, 2014, 2, 2708-2717.	5.2	74
45	Hole injection and etching studies of gallium arsenide using the scanning electrochemical microscope. Langmuir, 1990, 6, 1489-1494.	1.6	73
46	Two-Dimensional Polyaniline Thin Film Electrodeposited on a Self-Assembled Monolayer. Journal of the American Chemical Society, 1998, 120, 10733-10742.	6.6	73
47	A high-performance electrochemical sensor based on g-C3N4-E-PEDOT for the determination of acetaminophen. Electrochimica Acta, 2018, 259, 994-1003.	2.6	73
48	Enzyme-catalysed biotransformations through photochemical regeneration of nicotinamide cofactors. Enzyme and Microbial Technology, 1989, 11, 467-483.	1.6	71
49	Measurement of Lateral Charge Propagation in Polyaniline Layers with the Scanning Electrochemical Microscope. Journal of Physical Chemistry B, 2003, 107, 407-410.	1.2	71
50	Scanning Electrochemical Microscopy. Theory of the Feedback Mode for Hemispherical Ultramicroelectrodes:Â Steady-State and Transient Behavior. Analytical Chemistry, 2000, 72, 2383-2390.	3.2	69
51	Europium Doped Vanadium Dioxide Material: Reduced Phase Transition Temperature, Enhanced Luminous Transmittance and Solar Modulation. Science of Advanced Materials, 2014, 6, 558-561.	0.1	69
52	Self-assembled monolayers on mercury surfaces. Journal of Electroanalytical Chemistry, 1996, 409, 131-136.	1.9	68
53	Self-assembly of a tripeptide into a functional coating that resists fouling. Chemical Communications, 2014, 50, 11154-11157.	2.2	68
54	Periodic micro-patterned VO ₂ thermochromic films by mesh printing. Journal of Materials Chemistry C, 2016, 4, 8385-8391.	2.7	68

#	Article	IF	CITATIONS
55	Electrochemical Dynamics of a Single Platinum Nanoparticle Collision Event for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2018, 57, 3464-3468.	7.2	68
56	Electrochemically Induced Sol–Gel Deposition of Zirconia Thin Films. Chemistry - A European Journal, 2004, 10, 1936-1943.	1.7	65
57	Study of silicon etching in HBr solutions using a scanning electrochemical microscope. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1019.	1.7	64
58	Preparation and characterization of octadecylsilane monolayers on indium–tin oxide (ITO) surfaces. Journal of Electroanalytical Chemistry, 2001, 500, 453-460.	1.9	64
59	Corrosion inhibition of magnesium by combined zirconia silica sol–gel films. Electrochimica Acta, 2008, 53, 5118-5127.	2.6	64
60	Important Implications of the Electrochemical Reduction of ITO. Electrochimica Acta, 2015, 176, 1374-1381.	2.6	63
61	Electrochemical mercury detection. Nature, 1993, 362, 703-704.	13.7	62
62	Studying thiol adsorption on Au, Ag and Hg surfaces by potentiometric measurements. Journal of Electroanalytical Chemistry, 2003, 550-551, 267-276.	1.9	62
63	Polyaniline Monolayer Self-Assembled on Hydroxyl-Terminated Surfaces. Langmuir, 2001, 17, 2556-2559.	1.6	60
64	Electrochemical Codeposition of Thin Gold Nanoparticles/Solâ^'Gel Nanocomposite Films. Chemistry of Materials, 2010, 22, 3943-3951.	3.2	60
65	High switching speed and coloration efficiency of titanium-doped vanadium oxide thin film electrochromic devices. Journal of Materials Chemistry C, 2013, 1, 7380.	2.7	60
66	Anion embedded sol–gel films on Al for corrosion protection. Corrosion Science, 2004, 46, 2975-2985.	3.0	59
67	Electrochemical determination of ultralow levels (<10â~'12 M) of mercury by anodic stripping voltammetry using a chemically modified electrode. Electroanalysis, 1994, 6, 838-843.	1.5	58
68	Application of Sol-Gel Technology for Electroanalytical Sensing. Electroanalysis, 2003, 15, 398-408.	1.5	58
69	Electrochemical Co-deposition of Solâ^'Gel/Metal Thin Nanocomposite Films. Chemistry of Materials, 2008, 20, 4276-4283.	3.2	58
70	A New Approach to Micropatterning:Â Application of Potential-Assisted Ion Transfer at the Liquidâ°'Liquid Interface for the Local Metal Deposition. Journal of the American Chemical Society, 2002, 124, 5618-5619.	6.6	57
71	Effect of Surface Pressure on the Insulator to Metal Transition of a Langmuir Polyaniline Monolayer. Journal of the American Chemical Society, 2003, 125, 9312-9313.	6.6	57
72	Theory of scanning electrochemical microscopy (SECM) as a probe of surface conductivity. Physical Chemistry Chemical Physics, 2005, 7, 356-365.	1.3	57

#	Article	IF	CITATIONS
73	Photosensitized NAD(P)H regeneration systems; application in the reduction of butan-2-one, pyruvic, and acetoacetic acids and in the reductive amination of pyruvic and oxoglutaric acid to amino acid. Journal of the Chemical Society Perkin Transactions II, 1986, , 805.	0.9	56
74	Electrochemistry and structure of the isomers of aminothiophenol adsorbed on gold. Journal of Electroanalytical Chemistry, 2000, 491, 55-68.	1.9	56
75	Preparation and Characterization of Alkylphosphonic Acid Self-Assembled Monolayers on Titanium Alloy by Chemisorption and Electrochemical Deposition. Langmuir, 2014, 30, 6791-6799.	1.6	56
76	Detection of folic acid protein in human serum using reduced graphene oxide electrodes modified by folic-acid. Biosensors and Bioelectronics, 2016, 75, 389-395.	5.3	54
77	Electrochemically Driven Hydroxyapatite Nanoparticles Coating of Medical Implants. Advanced Functional Materials, 2016, 26, 8003-8010.	7.8	53
78	The effect of an alkylsilane monolayer on an indiumî—tin oxide surface on the electrochemistry of hexacyanoferrate. Journal of Electroanalytical Chemistry, 2000, 484, 194-202.	1.9	52
79	Detection of uranium(VI) in aqueous solution by a calix[6]arene modified electrode. Journal of Electroanalytical Chemistry, 2008, 621, 214-221.	1.9	51
80	Studying Heterogeneous Catalysis by the Scanning Electrochemical Microscope (SECM):  The Reduction of Protons by Methyl Viologen Catalyzed by a Platinum Surface. Journal of Physical Chemistry B, 1999, 103, 1509-1517.	1.2	48
81	Probing the Interaction of Individual Amino Acids with Inorganic Surfaces Using Atomic Force Spectroscopy. Langmuir, 2013, 29, 10102-10109.	1.6	48
82	Index-tunable anti-reflection coatings: Maximizing solar modulation ability for vanadium dioxide-based smart thermochromic glazing. Journal of Alloys and Compounds, 2018, 731, 1197-1207.	2.8	48
83	Thiol self-assembled monolayers on mercury surfaces: the adsorption and electrochemistry of ï‰-mercaptoalkanoic acids. Electrochimica Acta, 1999, 45, 537-548.	2.6	47
84	Electrodeposition of Dye-Doped Titania Thin Films. Journal of Sol-Gel Science and Technology, 2004, 31, 329-334.	1.1	47
85	Poly(methyl methacrylate) Grafting onto Stainless Steel Surfaces: Application to Drug-Eluting Stents. ACS Applied Materials & Interfaces, 2009, 1, 2519-2528.	4.0	47
86	Formation of VO2 zero-dimensional/nanoporous layers with large supercooling effects and enhanced thermochromic properties. RSC Advances, 2013, 3, 7124.	1.7	47
87	Chiral Self-Assembled Monolayers. Journal of the American Chemical Society, 1995, 117, 1147-1148.	6.6	46
88	Visualization of Sebaceous Fingerprints on Fired Cartridge Cases: A Laboratory Study. Journal of Forensic Sciences, 1998, 43, 543-548.	0.9	45
89	Evaluation of drugâ€eluting stents' coating durability—Clinical and regulatory implications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 441-451.	1.6	44
90	Composition-Tailoring of ZnO-Hydroxyapatite Nanocomposite as Bioactive and Antibacterial Coating. ACS Applied Nano Materials, 2019, 2, 2946-2957.	2.4	44

#	Article	IF	CITATIONS
91	Anodic oxidation of Au(111). Canadian Journal of Chemistry, 1997, 75, 1703-1709.	0.6	43
92	Nanosphere molecularly imprinted polymers doped with gold nanoparticles for high selectivity molecular sensors. Nano Research, 2017, 10, 1056-1063.	5.8	43
93	Effective photoreduction of carbon dioxide/bicarbonate to formate using visible light. Journal of the American Chemical Society, 1987, 109, 7884-7885.	6.6	42
94	Revealing the role of catechol moieties in the interactions between peptides and inorganic surfaces. Nanoscale, 2016, 8, 15309-15316.	2.8	42
95	Photoinduced carbon dioxide fixation forming malic and isocitric acid. Journal of the Chemical Society Chemical Communications, 1986, , 1022.	2.0	41
96	Deposition of Nickel Hydroxide Structures Using the Scanning Electrochemical Microscope. Journal of the Electrochemical Society, 1994, 141, 995-999.	1.3	41
97	Electrochemical Determination of Low Levels of Uranyl by a Vibrating Gold Microelectrode. Analytical Chemistry, 2015, 87, 768-776.	3.2	41
98	Electrochemical Determination of Uranyl Ions Using a Self-Assembled Monolayer. Analytical Chemistry, 2009, 81, 8627-8631.	3.2	40
99	Methanol electro-oxidation to formate on iron-substituted lanthanum cobaltite perovskite oxides. EScience, 2022, 2, 87-94.	25.0	40
100	Local Deposition of Gold on Silicon by the Scanning Electrochemical Microscope. Journal of the Electrochemical Society, 2001, 148, C533.	1.3	39
101	Electrochemically patterning sol–gel structures on conducting and insulating surfaces. Chemical Communications, 2011, 47, 6909.	2.2	39
102	Elucidating the mechanism of interaction between peptides and inorganic surfaces. Physical Chemistry Chemical Physics, 2015, 17, 15305-15315.	1.3	39
103	Photohydrogenation of acetylenes in water-oil two-phase systems: application of novel metal colloids and mechanistic aspects of the process. The Journal of Physical Chemistry, 1987, 91, 3600-3605.	2.9	38
104	Efficient Near Infrared Modulation with High Visible Transparency Using SnO ₂ –WO ₃ Nanostructure for Advanced Smart Windows. Advanced Optical Materials, 2019, 7, 1801389.	3.6	38
105	Arsenic(III) detection in water by flow-through carbon nanotube membrane decorated by gold nanoparticles. Electrochimica Acta, 2019, 318, 496-503.	2.6	38
106	Nanoparticleâ€Imprinted Polymers for Sizeâ€Selective Recognition of Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 294-298.	7.2	37
107	Electrochemical Dynamics of a Single Platinum Nanoparticle Collision Event for the Hydrogen Evolution Reaction. Angewandte Chemie, 2018, 130, 3522-3526.	1.6	37
108	Formation and performance of highly absorbing solar thermal coating based on carbon nanotubes and boehmite. Energy Conversion and Management, 2016, 120, 287-293.	4.4	36

#	Article	IF	CITATIONS
109	Electrochemically stimulated drug release from flexible electrodes coated electrophoretically with doxorubicin loaded reduced graphene oxide. Chemical Communications, 2017, 53, 4022-4025.	2.2	36
110	Localized Electroless Deposition of Gold Nanoparticles Using Scanning Electrochemical Microscopy. Journal of the Electrochemical Society, 2008, 155, D459.	1.3	35
111	Studying the Reactions of CdTe Nanostructures and Thin CdTe Films with Ag ⁺ and AuCl ₄ ^{â^'} . Journal of Physical Chemistry C, 2008, 112, 8881-8889.	1.5	34
112	TiO ₂ –WO ₃ core–shell inverse opal structure with enhanced electrochromic performance in NIR region. Journal of Materials Chemistry C, 2018, 6, 8488-8494.	2.7	34
113	Ultrafine Ni(OH)2 nanoplatelets grown on 3D graphene hydrogel fabricated by electrochemical exfoliation for high-performance battery-type asymmetric supercapacitor applications. Journal of Power Sources, 2019, 439, 227046.	4.0	34
114	Thin Nanocomposite Films of Polyaniline/Au Nanoparticles by the Langmuirâ^'Blodgett Technique. Langmuir, 2010, 26, 4239-4245.	1.6	33
115	Electrochemical Approach for Effective Antifouling and Antimicrobial Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 26503-26509.	4.0	33
116	Development of Latent Fingerprints on Unfired Cartridges by Palladium Deposition: A Surface Study. Journal of Forensic Sciences, 1997, 42, 986-992.	0.9	33
117	Disorganised self-assembled monolayers (SAMs): the incorporation of amphiphilic molecules. Analyst, The, 2001, 126, 1850-1856.	1.7	32
118	Ionic strength induced electrodeposition: a universal approach for nanomaterial deposition at selective areas. Nanoscale, 2017, 9, 485-490.	2.8	32
119	Preparation of Biomassâ€Based Porous Carbons with High Specific Capacitance for Applications in Supercapacitors. ChemElectroChem, 2019, 6, 3599-3605.	1.7	32
120	Electrochemical deposition of N-heterocyclic carbene monolayers on metal surfaces. Nature Communications, 2020, 11, 5714.	5.8	32
121	Electrochemical determination of trace amounts of gold(III) by anodic stripping voltammetry using a chemically modified electrode. Analytical Chemistry, 1993, 65, 2089-2092.	3.2	31
122	Electrochemical co-deposition of conductive polymer–silica hybrid thin films. Physical Chemistry Chemical Physics, 2013, 15, 10876.	1.3	31
123	Molecularly imprinted polymer particles: Formation, characterization and application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 495, 11-19.	2.3	31
124	Polyaniline Langmuir–Blodgett films: formation and properties. Physical Chemistry Chemical Physics, 2009, 11, 3490.	1.3	30
125	Electroless Deposition of Conducting Polymers Using the Scanning Electrochemical Microscope. Advanced Materials, 1999, 11, 1221-1226.	11.1	29
126	Characterization of n-alkanethiol self-assembled monolayers on mercury by impedance spectroscopy and potentiometric measurements. Journal of Electroanalytical Chemistry, 2006, 593, 227-240.	1.9	29

#	Article	IF	CITATIONS
127	Ionic strength induced electrodeposition of two-dimensional layered MoS 2 nanosheets. Applied Materials Today, 2017, 8, 44-53.	2.3	29
128	n-Alkanoic Acid Monolayers on 316L Stainless Steel Promote the Adhesion of Electropolymerized Polypyrrole Films. Langmuir, 2006, 22, 5237-5240.	1.6	28
129	Scanning Electrochemical Imprinting Microscopy: A Tool for Surface Patterning. Journal of the Electrochemical Society, 2008, 155, D203.	1.3	28
130	Control of locally deposited gold nanoparticle on polyaniline films. Electrochimica Acta, 2009, 54, 2951-2956.	2.6	28
131	Localized Deposition of Au Nanoparticles by Direct Electron Transfer through Cellobiose Dehydrogenase. Chemistry - A European Journal, 2010, 16, 11697-11706.	1.7	28
132	A novel non-selective coating material for solar thermal potential application formed by reaction between sol–gel titania and copper manganese spinel. Solar Energy Materials and Solar Cells, 2014, 120, 23-29.	3.0	28
133	Photoinduced enzyme-catalysed synthesis of amino acids by visible light. Journal of the Chemical Society Chemical Communications, 1986, , 851.	2.0	27
134	Probing the Coupling of Charge-Transfer Processes Across Liquid/Liquid Interfaces by the Scanning Electrochemical Microscope. Journal of Physical Chemistry B, 2000, 104, 4903-4910.	1.2	27
135	Pyrrole derivatives for electrochemical coating of metallic medical devices. Journal of Polymer Science Part A, 2004, 42, 1658-1667.	2.5	27
136	Local Cobalt Electrodeposition Using the Scanning Electrochemical Microscope. Electrochemical and Solid-State Letters, 2004, 7, C71.	2.2	27
137	A novel approach to fingerprint visualization on paper using nanotechnology: reversing the appearance by tailoring the gold nanoparticles' capping ligands. Chemical Communications, 2013, 49, 3688.	2.2	27
138	Electrochemically "Writing―Graphene from Graphene Oxide. Small, 2014, 10, 3555-3559.	5.2	27
139	Microelectrochemistry on Surfaces with the Scanning Electrochemical Microscope (SECM). Israel Journal of Chemistry, 1996, 36, 73-80.	1.0	26
140	Studying the binding of Cd2+ by ω-mercaptoalkanoic acid self assembled monolayers by cyclic voltammetry and scanning electrochemical microscopy (SECM). Journal of Electroanalytical Chemistry, 2005, 581, 310-319.	1.9	26
141	Electropolymerized Tricopolymer Based on <i>N</i> -Pyrrole Derivatives as a Primer Coating for Improving the Performance of a Drug-Eluting Stent. ACS Applied Materials & Interfaces, 2009, 1, 758-767.	4.0	26
142	Local deposition of anisotropic nanoparticles using scanning electrochemical microscopy (SECM). Physical Chemistry Chemical Physics, 2013, 15, 2725.	1.3	26
143	Electrochemically triggered release of human insulin from an insulin-impregnated reduced graphene oxide modified electrode. Chemical Communications, 2015, 51, 14167-14170.	2.2	26
144	Facile preparation of aqueous suspensions of WO ₃ /sulfonated PEDOT hybrid nanoparticles for electrochromic applications. Chemical Communications, 2016, 52, 9379-9382.	2.2	26

#	Article	IF	CITATIONS
145	The effect of surface attachment on ligand binding: studying the association of Mg2+, Ca2+and Sr2+by 1-thioglycerol and 1,4-dithiothreitol monolayers. Physical Chemistry Chemical Physics, 2006, 8, 158-164.	1.3	25
146	Drug-eluting stent with improved durability and controllability properties, obtained via electrocoated adhesive promotion layer. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 819-830.	1.6	25
147	The Dynamic Redox Chemistry of Iron in the Epilimnion of Lake Kinneret (Sea of Galilee). Geochimica Et Cosmochimica Acta, 1998, 62, 565-576.	1.6	24
148	In Situ FTIR-ATR Studies of Functionalized Self-Assembled Bilayer Interactions with Metal Ions in Aqueous Solutions. Langmuir, 2002, 18, 6976-6980.	1.6	24
149	Improved Resolution of Local Metal Deposition by Means of Constant Distance Mode Scanning Electrochemical Microscopy. Electroanalysis, 2005, 17, 538-542.	1.5	24
150	Why is copper locally etched by scanning electrochemical microscopy?. Journal of Electroanalytical Chemistry, 2008, 622, 115-120.	1.9	24
151	Enhanced Potentiometry by Metallic Nanoparticles. Analytical Chemistry, 2013, 85, 8347-8353.	3.2	24
152	Adsorption and detection of organic pollutants by fixed bed carbon nanotube electrochemical membrane. Chemical Engineering Journal, 2019, 359, 130-137.	6.6	24
153	Photoredox reactions in water-in-oil microemulsions. The functions of amphiphilic viologens in charge separation and electron transfer across a water-oil boundary. The Journal of Physical Chemistry, 1984, 88, 4366-4370.	2.9	23
154	Characterization and Electroanalytical Application of ï‰â€Mercaptoalkanesulfonic Acid Monolayers on Gold. Israel Journal of Chemistry, 1997, 37, 225-233.	1.0	23
155	Self-assembled monolayers on Au microelectrodes. Electrochemistry Communications, 2007, 9, 2827-2832.	2.3	23
156	Electrochemically deposited poly(ethylene glycol)-based sol–gel thin films on stainless steel stents. New Journal of Chemistry, 2009, 33, 1596.	1.4	23
157	Determination of low levels of cadmium ions by the under potential deposition on a self-assembled monolayer on gold electrode. Analytica Chimica Acta, 2011, 684, 1-7.	2.6	23
158	Studying the localized deposition of Ag nanoparticles on self-assembled monolayers by scanning electrochemical microscopy (SECM). Electrochimica Acta, 2011, 56, 6954-6961.	2.6	23
159	Amplified detection of femtomolar DNA based on a one-to-few recognition reaction between DNA–Au conjugate and target DNA. Nanoscale, 2014, 6, 3110.	2.8	23
160	Multienzyme Inkjet Printed 2D Arrays. ACS Applied Materials & amp; Interfaces, 2015, 7, 17985-17992.	4.0	23
161	Selective Binding and Precipitation of Cesium Ions from Aqueous Solutions: A Sizeâ€Driven Supramolecular Reaction. Chemistry - A European Journal, 2018, 24, 3161-3164.	1.7	23
162	The synergistic effect of benzotriazole and trimethylsiloxysilicate towards corrosion protection of printed Cu-based electronics. Corrosion Science, 2018, 143, 329-336.	3.0	23

#	Article	IF	CITATIONS
163	A novel approach for studying charge transfer across an interface of two immiscible solutions using the scanning electrochemical microscope (SECM). Journal of Electroanalytical Chemistry, 1996, 409, 15-17.	1.9	22
164	Pattern recognition in oxides thin-film electrodeposition: Printed circuits. Comptes Rendus Chimie, 2010, 13, 237-241.	0.2	22
165	Symmetrical thiol functionalized polyhedral oligomeric silsesquioxanes as building blocks for LB films. Soft Matter, 2011, 7, 8862.	1.2	22
166	Ionosomes: Observation of Ionic Bilayer Water Clusters. Journal of the American Chemical Society, 2021, 143, 7671-7680.	6.6	22
167	Comparing Different Approaches for Assembling Selective Electrodes for Heavy Metals. Electroanalysis, 2001, 13, 653-659.	1.5	21
168	In Situ Potentiostatic Deposition of Calcium Phosphate with Gentamicin-Loaded Chitosan Nanoparticles on Titanium Alloy Surfaces. Electrochimica Acta, 2016, 222, 355-360.	2.6	21
169	Electrochromic smart glass coating on functional nano-frameworks for effective building energy conservation. Materials Today Energy, 2020, 18, 100496.	2.5	21
170	Novel Nd–Mo co-doped SnO2/α-WO3 electrochromic materials (ECs) for enhanced smart window performance. Ceramics International, 2021, 47, 18433-18442.	2.3	21
171	Transformation of single-electron transfer photoproducts into multielectron charge relays: the functions of water—oil two-phase systems and enzyme catalysis. Journal of Photochemistry and Photobiology, 1985, 28, 215-228.	0.6	20
172	The effect of tin(II) chloride adsorption on the electrochemical oxidation of tin(II) and other reactions at gold and platinum electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 307, 217-228.	0.3	20
173	Electrochemical detection of Cd2+ ions by a self-assembled monolayer of 1,9-nonanedithiol on gold. Electrochimica Acta, 2008, 53, 6753-6758.	2.6	20
174	Application of polyethyleneimine-quinone modified electrodes for voltammetric measurements of pH. Electrochimica Acta, 1992, 37, 2765-2767.	2.6	19
175	Preparation and characterization of ultra-thin sol–gel films. Thin Solid Films, 2007, 515, 4624-4628.	0.8	19
176	A new approach for measuring the redox state and redox capacity in milk. Analytical Methods, 2009, 1, 93.	1.3	19
177	Nanoparticleâ€Imprinted Polymers: Shellâ€Selective Recognition of Au Nanoparticles by Imprinting Using the Langmuir–Blodgett Method. ChemElectroChem, 2015, 2, 795-802.	1.7	19
178	Chiral self-assembled monolayers in electrochemistry. Current Opinion in Electrochemistry, 2018, 7, 42-47.	2.5	19
179	Controllable Assembly of Hybrid Electrodes by Electrophoretic Deposition for High-Performance Battery–Supercapacitor Hybrid Devices. ACS Applied Energy Materials, 2020, 3, 1784-1793.	2.5	18
180	Electrodeposited Sulfur and CoxS Electrocatalyst on Buckypaper as High-Performance Cathode for Li–S Batteries. Nano-Micro Letters, 2020, 12, 141.	14.4	18

#	Article	IF	CITATIONS
181	Development of nitrogen-decorated carbon dots (NCDs) thermally conductive film for windows application. Carbon Letters, 2022, 32, 1065-1072.	3.3	18
182	Pd doped carbon nitride (Pd-g-C ₃ N ₄): an efficient photocatalyst for hydrogenation <i>via</i> an Al–H ₂ O system and an electrocatalyst towards overall water splitting. Green Chemistry, 2022, 24, 5535-5546.	4.6	18
183	On-Line Analysis of Mercury by Sequential Injection Stripping Analysis (SISA) Using a Chemically Modified Electrode. Electroanalysis, 2001, 13, 79-82.	1.5	17
184	Studying electron transfer at electrochromic tungsten oxide sol–gel films with scanning electrochemical microscopy (SECM). Physical Chemistry Chemical Physics, 2003, 5, 3212-3219.	1.3	17
185	Preparation, characterization and applications of ultrathin cellulose acetate Langmuir–Blodgett films. Soft Matter, 2007, 3, 1053-1063.	1.2	17
186	Modern practices in electrophoretic deposition to manufacture energy storage electrodes. International Journal of Energy Research, 2022, 46, 13205-13250.	2.2	17
187	Scanning electrochemical microscopy as a probe of Ag+ binding kinetics at Langmuir phospholipid monolayers. Physical Chemistry Chemical Physics, 2005, 7, 2955.	1.3	16
188	Electrochemical Formation and Characterization of Copolymers Based on <i>N</i> -Pyrrole Derivatives. Biomacromolecules, 2007, 8, 2928-2935.	2.6	16
189	Thin functionalized films on cylindrical microelectrodes for electrochemical determination of Hg(II). Journal of Electroanalytical Chemistry, 2010, 649, 153-158.	1.9	16
190	Preparation and Characterization of Mono- and Multilayer Films of Polymerizable 1,2-Polybutadiene Using the Langmuir–Blodgett Technique. Langmuir, 2011, 27, 11889-11898.	1.6	16
191	Comprehensive treatment of sphere-cap microelectrodes (SCMs) using digital simulations. Electrochemistry Communications, 1999, 1, 569-575.	2.3	15
192	Studying electron transfer through alkanethiol self-assembled monolayers on a hanging mercury drop electrode using potentiometric measurements. Physical Chemistry Chemical Physics, 2006, 8, 4405.	1.3	15
193	Electrochemical codeposition of sol–gel films on stainless steel: controlling the chemical and physical coating properties of biomedical implants. Physical Chemistry Chemical Physics, 2010, 12, 15265.	1.3	15
194	Deposition of Au and Ag nanoparticles on PEDOT. Physical Chemistry Chemical Physics, 2011, 13, 20345.	1.3	15
195	Electro-assist deposition of binary sol–gel films with graded structure. Electrochimica Acta, 2013, 102, 212-218.	2.6	15
196	Biomolecular AND Logic Gate Based on Immobilized Enzymes with Precise Spatial Separation Controlled by Scanning Electrochemical Microscopy. Journal of Physical Chemistry B, 2013, 117, 16058-16065.	1.2	15
197	Carbon Nanotube Based Flow-Through Electrochemical Cell for Electroanalysis. Analytical Chemistry, 2016, 88, 11007-11015.	3.2	15
198	Effect of Decorating Titanium with Different Self-Assembled Monolayers on the Electrodeposition of Calcium Phosphate. Crystal Growth and Design, 2016, 16, 2756-2764.	1.4	15

#	Article	IF	CITATIONS
199	The role of hydrophobic, aromatic and electrostatic interactions between amino acid residues and a titanium dioxide surface. Physical Chemistry Chemical Physics, 2018, 20, 29811-29816.	1.3	15
200	Core–shell nanoparticles for gas phase detection based on silver nanospheres coated with a thin molecularly imprinted polymer adsorbed on a chemiresistor. Nanoscale, 2018, 10, 17593-17602.	2.8	15
201	One-step fabrication of NiOx-decorated carbon nanotubes-NiCo2O4 as an advanced electroactive composite for supercapacitors. Electrochimica Acta, 2019, 318, 51-60.	2.6	15
202	Electrocoating of stainless steel coronary stents for extended release of Paclitaxel. Materials Science and Engineering C, 2007, 27, 510-513.	3.8	14
203	Local surface patterning by chitosan-stabilized gold nanoparticles using the direct mode of scanning electrochemical microscopy (SECM). Journal of Solid State Electrochemistry, 2013, 17, 2989-2997.	1.2	14
204	Self-assembled polymer layers of linear polyethylenimine for enhancing electrochromic cycling stability. Journal of Materials Chemistry C, 2013, 1, 3651.	2.7	14
205	Electrochemical co-deposition of sol–gel/carbon nanotube composite thin films for antireflection and non-linear optics. Journal of Materials Chemistry C, 2015, 3, 1099-1105.	2.7	14
206	Potential induced pH change: Towards electrochemical coating of medical implants by organic nanoparticles. Electrochimica Acta, 2010, 55, 8590-8594.	2.6	13
207	Electrodeposition of amorphous WO ₃ on SnO ₂ –TiO ₂ inverse opal nano-framework for highly transparent, effective and stable electrochromic smart window. RSC Advances, 2019, 9, 16730-16737.	1.7	13
208	Surface Functionalization of H-Terminated Silicon Surfaces with Alcohols Using Iodoform as an In Situ Iodinating Agent. ChemPhysChem, 2002, 3, 973-975.	1.0	12
209	Identification of firearms handling by the [Fe(PDT)] complex: Chemical and time-dependent factors. Talanta, 2005, 67, 328-333.	2.9	12
210	A novel electrochemically synthesized biodegradable thin film of polypyrrole–polyethyleneglycol–polylactic acid nanoparticles. New Journal of Chemistry, 2007, 31, 163-168.	1.4	12
211	Electro-Assisted Deposition of Calcium Phosphate on Self-Assembled Monolayers. Electrochimica Acta, 2016, 206, 400-408.	2.6	12
212	Speciation of nanoscale objects by nanoparticle imprinted matrices. Nanoscale, 2016, 8, 13934-13943.	2.8	12
213	Freeâ€Standing Hybrid Graphene Paper Encapsulating Nanostructures for High Cycleâ€Life Supercapacitors. ChemSusChem, 2018, 11, 907-915.	3.6	12
214	Electrochemically Deposited Sol–Gel Based Nanoparticle-Imprinted Matrices for the Size-Selective Detection of Gold Nanoparticles. ACS Applied Nano Materials, 2018, 1, 5612-5619.	2.4	12
215	ForSDAT: an automated platform for analyzing force spectroscopy measurements. Analytical Methods, 2019, 11, 4709-4718.	1.3	12
216	Electrophoretic deposition of reduced graphene oxide thin films for reduction of cross-sectional heat diffusion in glass windows. Journal of Science: Advanced Materials and Devices, 2019, 4, 252-259.	1.5	12

#	Article	IF	CITATIONS
217	Novel spinel nanocomposites of NixCo1â^'xFe2O4 nanoparticles with N-doped graphene for lithium ion batteries. Applied Surface Science, 2019, 481, 200-208.	3.1	12
218	Understanding the Adhesion Mechanism of Hydroxyapatite-Binding Peptide. Langmuir, 2022, 38, 968-978.	1.6	12
219	Electrocoating of stainless steel coronary stents for extended release of paclitaxel. Journal of Biomedical Materials Research - Part A, 2009, 88A, 427-436.	2.1	11
220	Electrochemically assisted deposition of biodegradable polymer nanoparticles/sol–gel thin films. Journal of Materials Chemistry, 2011, 21, 12145.	6.7	11
221	The synthesis and characterization of thiol-based aryl diazonium modified glassy carbon electrode for the voltammetric determination of low levels of Hg(II). Journal of Solid State Electrochemistry, 2013, 17, 1543-1552.	1.2	11
222	Electrochemical detection of dopamine by a calixarene-cellulose acetate mixed Langmuir-Blodgett monolayer. Analytica Chimica Acta, 2018, 1042, 29-36.	2.6	11
223	Using nanomaterials as building blocks for electrochemical deposition: A mini review. Electrochemistry Communications, 2020, 120, 106830.	2.3	11
224	Electrochemical study of the Cd(II)/Cd(Hg) system in 2-mercaptoacetic acid solutions. Electrochimica Acta, 1995, 40, 1093-1100.	2.6	10
225	Determination of the Heterogeneous Association Constants of Metal Ions to?-Mercaptoalkanoic Acids by Using Double-Layer Capacity Measurements. ChemPhysChem, 2004, 5, 1532-1539.	1.0	10
226	Nanometric thin polymeric films based on molecularly imprinted technology: towards electrochemical sensing applications. Physical Chemistry Chemical Physics, 2010, 12, 11041.	1.3	10
227	Fabrication of Carbon Nanotube/Indium Tin Oxide "Inverse Tandem―Absorbing Coatings with Tunable Spectral Selectivity for Solar–Thermal Applications. Energy Technology, 2015, 3, 1045-1050.	1.8	10
228	Highly Selective Solar Thermal Sprayable Coating Based on Carbon Nanotubes. Solar Rrl, 2017, 1, 1700080.	3.1	10
229	Localized Charge Transfer in Two-Dimensional Molybdenum Trioxide. ACS Applied Materials & Interfaces, 2017, 9, 27045-27053.	4.0	10
230	Electrochemical deposition of highly porous reduced graphene oxide electrodes for Li-ion capacitors. Electrochimica Acta, 2020, 337, 135861.	2.6	10
231	3D spongy nanofiber structure Fe–NC catalysts built by a graphene regulated electrospinning method. Chemical Communications, 2020, 56, 6277-6280.	2.2	10
232	Nd–Nb Co-doped SnO ₂ /α-WO ₃ Electrochromic Materials: Enhanced Stability and Switching Properties. ACS Omega, 2021, 6, 26251-26261.	1.6	10
233	Shell–Matrix Interaction in Nanoparticle-Imprinted Matrices: Implications for Selective Nanoparticle Detection and Separation. ACS Applied Nano Materials, 2021, 4, 10819-10827.	2.4	10
234	Interfacial polymerisation of anilinium at Langmuir monolayers. Chemical Communications, 2004, , 450.	2.2	9

#	Article	IF	CITATIONS
235	Binding of Cd2+to Self-Assembled Bilayers Bearing Pyridine Terminal Groups:Â Attenuated Total Reflection Fourier Transform Infrared Spectroscopic Studies. Langmuir, 2004, 20, 4498-4502.	1.6	9
236	Complexation of Ferrous and Cupric Ions by Phenanthroline and Terpyridine Langmuir Films. Langmuir, 2006, 22, 7462-7464.	1.6	9
237	Preparation and comparison between different thiol-protected Au nanoparticles. Journal of Nanoparticle Research, 2010, 12, 1807-1811.	0.8	9
238	A New Electrochemical Flow Cell for the Remote Sensing of Heavy Metals. Electroanalysis, 2013, 25, 109-115.	1.5	9
239	Perpendicular Orientation of Anisotropic Auâ€Tipped CdS Nanorods at the Air/Water Interface. Advanced Materials Interfaces, 2014, 1, 1300030.	1.9	9
240	Nanoparticleâ€Imprinted Matrices as Sensing Layers for Sizeâ€5elective Recognition of Silver Nanoparticles. ChemElectroChem, 2016, 3, 2116-2124.	1.7	9
241	Effect of Self-Assembled Monolayers on the Locally Electrodeposited Silver Thin Layers. Journal of Physical Chemistry C, 2016, 120, 15608-15617.	1.5	9
242	Additiveâ€Free Electrophoretic Deposition of Graphene Quantum Dots Thin Films. Chemistry - A European Journal, 2019, 25, 16573-16581.	1.7	9
243	Chemically modified electrode for the determination of gold ? an electrochemical and spectrophotometric study. Fresenius' Journal of Analytical Chemistry, 1994, 349, 491-496.	1.5	8
244	Electrostatic Attachment of Gold and Poly(lactic acid) Nanoparticles ontoï‰-Aminoalkanoic Acid Self-Assembled Monolayers on 316L Stainless Steel. Chemistry - A European Journal, 2007, 13, 6402-6407.	1.7	8
245	Deposition of Gold Nanoparticles on Thin Polyaniline Films. Israel Journal of Chemistry, 2008, 48, 349-357.	1.0	8
246	Novel felt pseudocapacitor based on carbon nanotube/metal oxides. Journal of Materials Science, 2015, 50, 6578-6585.	1.7	8
247	Scanning Electrochemical Microscopy versus Scanning Ion Conductance Microscopy for Surface Patterning. ChemElectroChem, 2017, 4, 2981-2988.	1.7	8
248	Effect of matrix-nanoparticle interactions on recognition of aryldiazonium nanoparticle-imprinted matrices. Nano Research, 2019, 12, 265-271.	5.8	8
249	Direct Electron Transfer between Glucose Oxidase and Gold Nanoparticles; When Size Matters. ChemElectroChem, 2019, 6, 147-154.	1.7	8
250	Fabrication of Selfâ€Cleaning CNTâ€Based Nearâ€Perfect Solar Absorber Coating for Nonâ€Evacuated Concentrated Solar Power Applications. Energy Technology, 2020, 8, 2000699.	1.8	8
251	Antifouling and antimicrobial coatings based on sol–gel films. Journal of Sol-Gel Science and Technology, 2020, 95, 609-619.	1.1	8
252	Electrochemistry of molecular imprinting of large entities. Current Opinion in Electrochemistry, 2022, 34, 100967.	2.5	8

Daniel Mandler

#	Article	IF	CITATIONS
253	Imaging of Diaphorase Micropatterned at Gold Arrays with Scanning Electrochemical Microscopy. Chemistry Letters, 2000, 29, 458-459.	0.7	7
254	Structural insight on organosilica electrodes for waste-free alcohol oxidations. Catalysis Letters, 2007, 114, 55-58.	1.4	7
255	A Reference Electrode for Organic Solvents Based on Modified Polyethylenimine Loaded with Fe (3 â~'  / 4 â~'. Journal of the Electrochemical Society, 1993, 140, L25-L27.	CN âª 1.3	€‰) 6
256	Formation, Characterization, and Applications of Organic and Inorganic Nanometric Films. Israel Journal of Chemistry, 2010, 50, 306-311.	1.0	6
257	Electrochemical Deposition of Sol-Gel Films. , 2018, , 531-568.		6
258	Size-Selective Detection of Nanoparticles in Solution and Air by Imprinting. ACS Sensors, 2022, 7, 296-303.	4.0	6
259	In Situ Electrodeposition of an Asymmetric Sol–Gel Membrane Based on an Octadecyltrimethoxysilane Langmuir Film. Chemistry - A European Journal, 2014, 20, 12104-12113.	1.7	5
260	Patterning carbon nanotubes with silane by scanning electrochemical microscopy. Electrochemistry Communications, 2014, 48, 56-60.	2.3	5
261	Quickly Manufactured, Drug Eluting, Calcium Phosphate Composite Coating. ChemistrySelect, 2017, 2, 753-758.	0.7	5
262	Atomically resolved calcium phosphate coating on a gold substrate. Nanoscale, 2018, 10, 8451-8458.	2.8	5
263	Overcoming the barrier of conventional electrochemical deposition of inorganic composites. Chemical Communications, 2020, 56, 379-382.	2.2	5
264	Hydrogel-integrated 3D-printed poly(lactic acid) scaffolds for bone tissue engineering. Journal of Materials Research, 2021, 36, 3833-3842.	1.2	5
265	A novel approach for oxidation analysis of therapeutic proteins. Analytical Biochemistry, 2016, 494, 108-113.	1.1	4
266	CNT-Based Solar Thermal Coatings: Absorptance vs. Emittance. Coatings, 2020, 10, 1101.	1.2	4
267	Electrodeposition of Methylated Sol-Gel Films on Conducting Surfaces. , 1999, 11, 384.		4
268	An Easy Method to Prepare Gold Electrodes. Journal of the Electrochemical Society, 1992, 139, L65-L65.	1.3	3
269	Electrochemical Coating of Medical Implants. Modern Aspects of Electrochemistry, 2011, , 291-342.	0.2	3
270	Control of Crystal Growth in Local Electroless Gold Deposition by Pyridinium Based Surfactants. Crystal Growth and Design, 2018, 18, 3913-3920.	1.4	3

#	Article	IF	CITATIONS
271	Electrochemical Triggered Dissolution of Hydroxyapatite/Doxorubicin Nanocarriers. ACS Applied Bio Materials, 2019, 2, 1956-1966.	2.3	3
272	Formation of asymmetric membrane by deposition of a hybrid sol-gel sublayer on top of a Langmuir film skin. Journal of Membrane Science, 2020, 595, 117559.	4.1	3
273	Improving the adhesion of polymethacrylate thin films onto indium tin oxide electrodes using a silane-based "Molecular Adhesiveâ€∙ Journal of Solid State Electrochemistry, 2011, 15, 2401-2407.	1.2	2
274	Special issue dedicated to Anna Brainina. Journal of Solid State Electrochemistry, 2013, 17, 1491-1492.	1.2	2
275	The future of electrochemical deposition: nanomaterial building blocks. Journal of Solid State Electrochemistry, 2020, 24, 2133-2135.	1.2	2
276	Polyhedral oligomeric silsesquioxanes as protective monolayer coatings against the high-temperature corrosion of concentrating solar power absorber surfaces. Solar Energy Materials and Solar Cells, 2021, 223, 110984.	3.0	2
277	Electrochemical metal speciation using self-assembled monolayers. European Physical Journal Special Topics, 2003, 107, 801-804.	0.2	2
278	Selective complexation between a novel bowl-shaped molecule and Fe3+ or ions. Inorganica Chimica Acta, 2010, 363, 2677-2681.	1.2	1
279	Wet-chemistry based selective coatings for concentrating solar power. , 2013, , .		1
280	SP1 based self-assembled selective molecular nanochannels. Journal of Electroanalytical Chemistry, 2018, 819, 220-225.	1.9	1
281	Electrochromic Materials: Efficient Near Infrared Modulation with High Visible Transparency Using SnO 2 –WO 3 Nanostructure for Advanced Smart Windows (Advanced Optical Materials 8/2019). Advanced Optical Materials, 2019, 7, 1970031.	3.6	1
282	Biocatalytic metal nanopatterning through enzyme-modified microelectrodes. Journal of Solid State Electrochemistry, 2020, 24, 2985-2996.	1.2	1
283	Scanning Electrochemical Microscopy (SECM). , 2014, , 1826-1836.		1
284	Conduction heat transfer switching using magnetic Fe\$\$_{x}\$\$O\$\$_{y}\$\$-decorated carbon-based nanomaterials. European Physical Journal: Special Topics, 0, , 1.	1.2	1
285	Daniel Mandler, Hebrew University of Jerusalem. Analyst, The, 2005, 130, 131.	1.7	0
286	Formation of a Molecular Glue Based on the Electrochemical Reduction of 4-Hydroxyphenyldiazonium for the Attachment of Thin Sol–Gel Film on Glassy Carbon. Zeitschrift Fur Physikalische Chemie, 2007, 221, 1237-1243.	1.4	0
287	Monitoring Heavy Metals in Seawater by Their Electrochemically Induced Deposition as Hydroxides. Electroanalysis, 2009, 21, 368-378.	1.5	0
288	ISRANALYTICA 2010, Tel Aviv, Israel, January 19-20, 2010. Israel Journal of Chemistry, 2010, 50, 262-264.	1.0	0

#	Article	IF	CITATIONS
289	Exciting New Directions in Electrochemistry: Honoring 2008 Wolf Prize Recipient Allen J. Bard. Israel Journal of Chemistry, 2010, 50, 249-251.	1.0	0
290	Characterization of thin films and membranes. Analytical and Bioanalytical Chemistry, 2013, 405, 1433-1434.	1.9	0
291	Nanorods: Perpendicular Orientation of Anisotropic Au-Tipped CdS Nanorods at the Air/Water Interface (Adv. Mater. Interfaces 1/2014). Advanced Materials Interfaces, 2014, 1, n/a-n/a.	1.9	0
292	Nanoparticle-Imprinted Polymers: Shell-Selective Recognition of Au Nanoparticles by Imprinting Using the Langmuir-Blodgett Method. ChemElectroChem, 2015, 2, 771-771.	1.7	0
293	Interactions of Microorganisms with Lipid Langmuir Layers. Langmuir, 2021, 37, 10340-10347.	1.6	0
294	Electrochemical Deposition of Sol–Gel Films. , 2016, , 1-38.		0
295	Fast Charging Hybrid Battery-Capacitor Based on Electrochemically-Intercalated Ni-Graphite. ECS Meeting Abstracts, 2020, MA2020-02, 651-651.	0.0	Ο