Damien Trentesaux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8373023/publications.pdf Version: 2024-02-01

		117571	138417
201	4,507	34	58
papers	citations	h-index	g-index
217	217	217	2057
217	217	217	2037
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Designing intelligent manufacturing systems through Human-Machine Cooperation principles: A human-centered approach. Computers and Industrial Engineering, 2017, 111, 581-595.	3.4	215
2	Sustainability in manufacturing operations scheduling: A state of the art review. Journal of Manufacturing Systems, 2015, 37, 126-140.	7.6	199
3	Distributed control of production systems. Engineering Applications of Artificial Intelligence, 2009, 22, 971-978.	4.3	195
4	Dynamic self-organization in holonic multi-agent manufacturing systems: The ADACOR evolution. Computers in Industry, 2015, 66, 99-111.	5.7	194
5	Bio-inspired multi-agent systems for reconfigurable manufacturing systems. Engineering Applications of Artificial Intelligence, 2012, 25, 934-944.	4.3	129
6	Horizontal collaborative transport: survey of solutions and practical implementation issues. International Journal of Production Research, 2019, 57, 5340-5361.	4.9	129
7	Digital transformation of manufacturing through cloud services and resource virtualization. Computers in Industry, 2019, 108, 150-162.	5.7	120
8	Dynamic scheduling of maintenance tasks in the petroleum industry: A reinforcement approach. Engineering Applications of Artificial Intelligence, 2009, 22, 1089-1103.	4.3	103
9	Two stage particle swarm optimization to solve the flexible job shop predictive scheduling problem considering possible machine breakdowns. Computers and Industrial Engineering, 2017, 112, 595-606.	3.4	96
10	Benchmarking flexible job-shop scheduling and control systems. Control Engineering Practice, 2013, 21, 1204-1225.	3.2	87
11	ORCA-FMS: a dynamic architecture for the optimized and reactive control of flexible manufacturing scheduling. Computers in Industry, 2014, 65, 706-720.	5.7	81
12	Decentralized Motion Planning and Scheduling of AGVs in an FMS. IEEE Transactions on Industrial Informatics, 2018, 14, 1744-1752.	7.2	76
13	A stigmergic approach for dynamic routing of active products in FMS. Computers in Industry, 2009, 60, 204-216.	5.7	73
14	Coupling predictive scheduling and reactive control in manufacturing hybrid control architectures: state of the art and future challenges. Journal of Intelligent Manufacturing, 2017, 28, 1503-1517.	4.4	70
15	Industry 4.0: contributions of holonic manufacturing control architectures and future challenges. Journal of Intelligent Manufacturing, 2021, 32, 1797-1818.	4.4	66
16	Reactive and energy-aware scheduling of flexible manufacturing systems using potential fields. Computers in Industry, 2014, 65, 434-448.	5.7	63
17	Digital interoperability in logistics and supply chain management: state-of-the-art and research avenues towards Physical Internet. Computers in Industry, 2021, 128, 103435.	5.7	61
18	Embedded holonic fault diagnosis of complex transportation systems. Engineering Applications of Artificial Intelligence, 2013, 26, 227-240.	4.3	59

#	Article	IF	CITATIONS
19	Scheduling under uncertainty: Survey and research directions. , 2014, , .		54
20	The lifecycle of active and intelligent products: The augmentation concept. International Journal of Computer Integrated Manufacturing, 2010, 23, 905-924.	2.9	52
21	Heterarchical production control in manufacturing systems using the potential fields concept. Journal of Intelligent Manufacturing, 2012, 23, 1649-1670.	4.4	51
22	Distributed manufacturing control with extended CNP interaction of intelligent products. Journal of Intelligent Manufacturing, 2014, 25, 1065-1075.	4.4	50
23	A genetic algorithm for robust hybrid flow shop scheduling. International Journal of Computer Integrated Manufacturing, 2011, 24, 821-833.	2.9	48
24	Dynamic scheduling for multi-site companies: a decisional approach based on reinforcement multi-agent learning. Journal of Intelligent Manufacturing, 2012, 23, 2513-2529.	4.4	48
25	Towards Energy Efficient Scheduling and Rescheduling for Dynamic Flexible Job Shop Problem. IFAC-PapersOnLine, 2018, 51, 1275-1280.	0.5	46
26	The control of myopic behavior in semi-heterarchical production systems: A holonic framework. Engineering Applications of Artificial Intelligence, 2013, 26, 800-817.	4.3	45
27	Pollux: a dynamic hybrid control architecture for flexible job shop systems. International Journal of Production Research, 2017, 55, 4229-4247.	4.9	45
28	Reactive Power Dispatch Optimization with Voltage Profile Improvement Using an Efficient Hybrid Algorithm. Energies, 2018, 11, 2134.	1.6	45
29	Reducing myopic behavior in FMS control: A semi-heterarchical simulation–optimization approach. Simulation Modelling Practice and Theory, 2014, 46, 53-75.	2.2	44
30	A Survey on the Usage of Blockchain Technology for Cyber-Threats in the Context of Industry 4.0. Sustainability, 2020, 12, 9179.	1.6	44
31	ETHICAL RISKS OF HUMAN-MACHINE SYMBIOSIS IN INDUSTRY 4.0: INSIGHTS FROM THE HUMAN-MACHINE COOPERATION APPROACH. IFAC-PapersOnLine, 2019, 52, 19-24.	0.5	41
32	A holonic multi-agent methodology to design sustainable intelligent manufacturing control systems. Journal of Cleaner Production, 2017, 167, 1370-1386.	4.6	40
33	A multi-agent system based on reactive decision rules for solving the caregiver routing problem in home health care. Simulation Modelling Practice and Theory, 2017, 74, 134-151.	2.2	38
34	Future Industrial Systems: Best Practices of the Intelligent Manufacturing and Services Systems (IMS2) French Research Group. IEEE Transactions on Industrial Informatics, 2017, 13, 704-713.	7.2	36
35	The ConWip production control system: a systematic review and classification. International Journal of Production Research, 2018, 56, 5736-5757.	4.9	36
36	A Human-Centred Design to Break the Myth of the "Magic Human―in Intelligent Manufacturing Systems. Studies in Computational Intelligence, 2016, , 103-113.	0.7	35

#	Article	IF	CITATIONS
37	Hybrid PSO-tabu search for the optimal reactive power dispatch problem. , 2014, , .		34
38	Manufacturing 4.0 Operations Scheduling with AGV Battery Management Constraints. Energies, 2020, 13, 4948.	1.6	34
39	Integration of the human operator into responsive discrete production management systems. European Journal of Operational Research, 1998, 109, 342-361.	3.5	32
40	Semi-heterarchical control of FMS: From theory to application. Engineering Applications of Artificial Intelligence, 2010, 23, 1314-1326.	4.3	32
41	Go-green manufacturing holons: A step towards sustainable manufacturing operations control. Manufacturing Letters, 2015, 5, 29-33.	1.1	32
42	Cross benefits from cyber-physical systems and intelligent products for future smart industries. , 2016, , .		31
43	A framework to help decision makers to be environmentally aware during the maintenance of cyber physical systems. Environmental Impact Assessment Review, 2019, 77, 11-22.	4.4	31
44	Energy-aware manufacturing operations. International Journal of Production Research, 2015, 53, 6994-7004.	4.9	30
45	Evolution of holonic control architectures towards Industry 4.0: A short overview. IFAC-PapersOnLine, 2018, 51, 1243-1248.	0.5	30
46	Multi-Objective Sustainable Truck Scheduling in a Rail–Road Physical Internet Cross-Docking Hub Considering Energy Consumption. Sustainability, 2019, 11, 3127.	1.6	30
47	An energy-efficient scheduling and rescheduling method for production and logistics systems ^{â€} . International Journal of Production Research, 2020, 58, 3263-3283.	4.9	30
48	A multicriteria decision support system for dynamic task allocation in a distributed production activity control structure. International Journal of Computer Integrated Manufacturing, 1998, 11, 3-17.	2.9	29
49	Proposition of a hybrid control architecture for the routing in a Physical Internet cross-docking hub. IFAC-PapersOnLine, 2015, 48, 1978-1983.	0.5	29
50	Personal Rapid Transit in an open-control framework. Computers and Industrial Engineering, 2011, 61, 300-312.	3.4	28
51	Switching mode control strategy in manufacturing execution systems. International Journal of Production Research, 2015, 53, 1950-1963.	4.9	28
52	An effective potential field approach to FMS holonic heterarchical control. Control Engineering Practice, 2012, 20, 1293-1309.	3.2	27
53	Hybrid approach to decision-making for job-shop scheduling. Production Planning and Control, 1999, 10, 690-706.	5.8	26
54	Distributed artificial intelligence for FMS scheduling, control and design support. Journal of Intelligent Manufacturing, 2000, 11, 573-589.	4.4	26

#	Article	IF	CITATIONS
55	Proposal of a multi-agent model for the sustainable truck scheduling and containers grouping problem in a Road-Rail physical internet hub. International Journal of Production Research, 2020, 58, 5477-5501.	4.9	26
56	Coupling a genetic algorithm with the distributed arrival-time control for the JIT dynamic scheduling of flexible job-shops. International Journal of Production Research, 2014, 52, 3688-3709.	4.9	25
57	Designing Ethical Cyber-Physical Industrial Systems. IFAC-PapersOnLine, 2017, 50, 14934-14939.	0.5	25
58	Towards human-based industrial cyber-physical systems. , 2018, , .		25
59	Self-organization in distributed manufacturing control: state-of-the-art and future trends. , 0, , .		24
60	Designing human–system cooperation in industry 4.0 with cognitive work analysis: a first evaluation. Cognition, Technology and Work, 2022, 24, 93-111.	1.7	24
61	A Secured Industrial Internet-of-Things Architecture Based on Blockchain Technology and Machine Learning for Sensor Access Control Systems in Smart Manufacturing. Applied Sciences (Switzerland), 2022, 12, 4641.	1.3	24
62	The Autonomous Train. , 2018, , .		23
63	Role-based manufacturing control in a holonic multi-agent system. International Journal of Production Research, 2011, 49, 1455-1468.	4.9	22
64	Towards Energy Efficient Scheduling of Manufacturing Systems through Collaboration between Cyber Physical Production and Energy Systems. Energies, 2019, 12, 4448.	1.6	22
65	Intelligent distributed production control. Journal of Intelligent Manufacturing, 2012, 23, 2507-2512.	4.4	21
66	Bottleneck-based opportunistic maintenance model for series production systems. Journal of Quality in Maintenance Engineering, 2015, 21, 70-88.	1.0	21
67	Engineering ethical behaviors in autonomous industrial cyber-physical human systems. Cognition, Technology and Work, 2022, 24, 113-126.	1.7	20
68	Hybrid production control approach for JIT scheduling. Advanced Engineering Informatics, 1998, 12, 49-67.	0.5	19
69	Navigation Scheme with Priority-Based Scheduling of Mobile Agents: Application to AGV-Based Flexible Manufacturing System. Journal of Intelligent and Robotic Systems: Theory and Applications, 2016, 82, 495-512.	2.0	19
70	Industrial Performance: An Evolution Incorporating Ethics in the Context of Industry 4.0. Sustainability, 2021, 13, 9209.	1.6	18
71	Product-based and resource-based heterarchical approaches for dynamic FMS scheduling. Computers and Industrial Engineering, 2004, 46, 611-623.	3.4	17
72	Nervousness in Dynamic Self-organized Holonic Multi-agent Systems. Advances in Intelligent and Soft Computing, 2012, , 9-17.	0.2	17

#	Article	IF	CITATIONS
73	Assessment of mathematical programming and agent-based modelling for off-line scheduling: Application to energy aware manufacturing. CIRP Annals - Manufacturing Technology, 2016, 65, 405-408.	1.7	17
74	Semi-heterarchical Allocation and Routing Processes in FMS Control: A Stigmergic Approach. Journal of Intelligent and Robotic Systems: Theory and Applications, 2010, 58, 17-45.	2.0	15
75	Arezzo-flexible manufacturing system: A generic flexible manufacturing system shop floor emulator approach for high-level control virtual commissioning. Concurrent Engineering Research and Applications, 2015, 23, 333-342.	2.0	15
76	Reactive control of overall power consumption in flexible manufacturing systems scheduling: A Potential Fields model. Control Engineering Practice, 2015, 44, 193-208.	3.2	15
77	Bi-local search based variable neighborhood search for job-shop scheduling problem with transport constraints. Optimization Letters, 2022, 16, 255-280.	0.9	15
78	Are Intelligent Manufacturing Systems Sustainable?. Studies in Computational Intelligence, 2014, , 3-14.	0.7	15
79	Ethical stakes of Industry 4.0. IFAC-PapersOnLine, 2020, 53, 17002-17007.	0.5	15
80	Modelling with coloured timed Petri nets and simulation of a dynamic and distributed management system for a manufacturing cell. International Journal of Computer Integrated Manufacturing, 1994, 7, 323-339.	2.9	14
81	Use of machine learning for continuous improvement of the real time heterarchical manufacturing control system performances. International Journal of Industrial and Systems Engineering, 2008, 3, 474.	0.1	14
82	WISDOM: A website design method based on reusing design and software solutions. Information and Software Technology, 2010, 52, 1272-1285.	3.0	13
83	Digital interoperability and transformation in logistics and supply chain management: Editorial. Computers in Industry, 2021, 129, 103462.	5.7	13
84	An approach for temporal myopia reduction in Heterarchical Control Architectures. , 2011, , .		12
85	A switching mechanism framework for optimal coupling of predictive scheduling and reactive control in manufacturing hybrid control architectures. International Journal of Production Research, 2016, 54, 7027-7042.	4.9	12
86	GRASP-based heuristic algorithm for the multi-product multi-vehicle inventory routing problem. 4or, 2016, 14, 377-404.	1.0	12
87	Dynamic scheduling of manufacturing systems: a product-driven approach using hyper-heuristics. International Journal of Computer Integrated Manufacturing, 2021, 34, 641-665.	2.9	12
88	Planning and Control of Maintenance, Repair and Overhaul Operations of a Fleet of Complex Transportation Systems: A Cyber-Physical System Approach. Studies in Computational Intelligence, 2015, , 175-186.	0.7	12
89	Les systèmes de pilotage hétérarchiques. Journal Europeen Des Systemes Automatises, 2007, 41, 1165-1202.	0.3	12
90	Reactive scheduling of complex system maintenance in a cooperative environment with communication times. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2003, 33, 225-234.	3.3	11

#	Article	IF	CITATIONS
91	Cooperation models between humans and artificial self-organizing systems: Motivations, issues and perspectives. , 2013, , .		11
92	Artificial Intelligence, Autonomous Systems and Robotics: Legal Innovations. Studies in Computational Intelligence, 2018, , 1-9.	0.7	11
93	Thermal optimization of a single inlet T-junction. International Journal of Thermal Sciences, 2012, 53, 108-118.	2.6	10
94	Routing Management in Physical Internet Crossdocking Hubs: Study of Grouping Strategies for Truck Loading. Lecture Notes in Computer Science, 2014, , 483-490.	1.0	10
95	Sustainability in Manufacturing Operations Scheduling: Stakes, Approaches and Trends. Lecture Notes in Computer Science, 2014, , 106-113.	1.0	10
96	Structural Self-organized Holonic Multi-Agent Manufacturing Systems. Lecture Notes in Computer Science, 2013, , 59-70.	1.0	10
97	Product-Driven Control: a State of the Art and Future Trends. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 716-721.	0.4	9
98	Solving the flexible job-shop just-in-time scheduling problem with quadratic earliness and tardiness costs. International Journal of Advanced Manufacturing Technology, 2015, 81, 1871-1891.	1.5	9
99	Software Engineering Methods for Intelligent Manufacturing Systems: A Comparative Survey. Lecture Notes in Computer Science, 2015, , 11-21.	1.0	9
100	Governance mechanism in control architectures for flexible manufacturing systems. IFAC-PapersOnLine, 2015, 48, 1093-1098.	0.5	9
101	Human-machine cooperation to design Intelligent Manufacturing Systems. , 2016, , .		9
102	Using process-mining for understating the emergence of self-organizing manufacturing systems IFAC-PapersOnLine, 2018, 51, 1618-1623.	0.5	9
103	Service Orientation in Holonic and Multi-Agent Manufacturing Control. Studies in Computational Intelligence, 2012, , .	0.7	9
104	Comparison of constraint logic programming and distributed problem solving: a case study for interactive, efficient and practicable job-shop scheduling. Computers and Industrial Engineering, 2001, 39, 187-211.	3.4	8
105	Self-Organized Holonic Multi-agent Manufacturing System: The Behavioural Perspective. , 2013, , .		8
106	Scheduling trucks and storage operations in a multiple-door cross-docking terminal considering multiple storage zones. International Journal of Production Research, 2022, 60, 1153-1177.	4.9	8
107	Holonic and multi-agent technologies for service and computing oriented manufacturing. Journal of Intelligent Manufacturing, 2017, 28, 1501-1502.	4.4	7
108	Ethical Behaviour Aspects of Autonomous Intelligent Cyber-Physical Systems. Studies in Computational Intelligence, 2020, , 55-71.	0.7	7

#	Article	IF	CITATIONS
109	Foundation of the Surfer Data Management Architecture and Its Application to Train Transportation. Studies in Computational Intelligence, 2018, , 111-125.	0.7	7
110	Product-Driven Control: Concept, Literature Review and Future Trends. Studies in Computational Intelligence, 2013, , 135-150.	0.7	7
111	Human and Cobot Cooperation Ethics: The Process Management Concept of the Production Workplace. Journal of Competitiveness, 2021, 13, 21-38.	1.4	7
112	Towards designing and operating physical internet cross-docks: Problem specifications and research perspectives. Omega, 2022, 111, 102641.	3.6	7
113	An Open-Control Concept for a Holonic Multiagent System. Lecture Notes in Computer Science, 2009, , 145-154.	1.0	6
114	Ensuring Ethics of Cyber-Physical and Human Systems: A Guideline. Studies in Computational Intelligence, 2021, , 223-233.	0.7	6
115	From Human-Human to Human-Machine Cooperation in Manufacturing 4.0. Processes, 2021, 9, 1910.	1.3	6
116	Multi-agent reinforcement learning for adaptive scheduling: application to multi-site company. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 1102-1107.	0.4	5
117	An Embedded Cooperative Holarchy for Diagnosing Complex Moving Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 673-678.	0.4	5
118	Supply Chain Management Using Multi-Agent Systems in the Agri-Food Industry. Studies in Computational Intelligence, 2014, , 145-155.	0.7	5
119	Cooperation mechanisms in multi-agent robotic systems and their use in distributed manufacturing control: Issues and literature review. , 2014, , .		5
120	Balancing preventive and corrective maintenance of aircraft assets: A cyber-physical systems approach. , 2016, , .		5
121	An Iterative Greedy Insertion Technique for Flexible Job Shop Scheduling Problem. IFAC-PapersOnLine, 2016, 49, 1956-1961.	0.5	5
122	Decision support in condition-based maintenance of a fleet of cyber-physical systems: A fuzzy logic approach. , 2017, , .		5
123	Root causes analysis and fault prediction in intelligent transportation systems: coupling unsupervised and supervised learning techniques. , 2019, , .		5
124	A Simulation-Optimization Approach for Two-Way Scheduling/Grouping in a Road-Rail Physical Internet Hub. IFAC-PapersOnLine, 2019, 52, 1644-1649.	0.5	5
125	Human Fatigue Aware Cyber-Physical Production System. , 2020, , .		5
126	A new methodological support for control and optimization of manufacturing systems in the context of product customization. Journal of Industrial and Production Engineering, 2021, 38, 341-355.	2.1	5

#	Article	IF	CITATIONS
127	A Framework Fostering the Consideration of Ethics During the Design of Industrial Cyber-Physical Systems. Studies in Computational Intelligence, 2022, , 349-362.	0.7	5
128	Semi-heterarchical agile control architecture with intelligent product-driven scheduling. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 108-113.	0.4	4
129	Enhancing ADACOR with biology insights towards reconfigurable manufacturing systems. , 2011, , .		4
130	Data Management Architectures for the Improvement of the Availability and Maintainability of a Fleet of Complex Transportation Systems: A State-of-the-Art Review. Studies in Computational Intelligence, 2018, , 93-110.	0.7	4
131	Event management architecture for the monitoring and diagnosis of a fleet of trains: a case study. Journal of Modern Transportation, 2019, 27, 169-187.	2.5	4
132	Effective dynamic selection of smart products scheduling rules in FMS. Manufacturing Letters, 2019, 20, 45-48.	1.1	4
133	Human-Machine Cooperation for the Distributed Control of a Hybrid Control Architecture. Studies in Computational Intelligence, 2020, , 98-110.	0.7	4
134	A Benchmarking Platform for Human-Machine Cooperation in Cyber-Physical Manufacturing Systems. Studies in Computational Intelligence, 2021, , 313-326.	0.7	4
135	Decision-Making in Future Industrial Systems: Is Ethics a New Performance Indicator?. Studies in Computational Intelligence, 2021, , 231-245.	0.7	4
136	Coupling Predictive Scheduling and Reactive Control in Manufacturing: State of the Art and Future Challenges. Studies in Computational Intelligence, 2015, , 29-37.	0.7	4
137	Smart Condition Based Maintenance (S-CBM) for a Fleet of Mobile Entities. Studies in Computational Intelligence, 2017, , 115-123.	0.7	4
138	Emerging Key Requirements for Future Energy-Aware Production Scheduling Systems: A Multi-agent and Holonic Perspective. Studies in Computational Intelligence, 2017, , 127-141.	0.7	4
139	Specifying Self-organising Logistics System: Openness, Intelligence, and Decentralised Control. Studies in Computational Intelligence, 2017, , 93-102.	0.7	4
140	Myopic Behaviour in Holonic Multiagent Systems for Distributed Control of FMS. Advances in Intelligent and Soft Computing, 2011, , 91-98.	0.2	4
141	Intelligent Products: A Spinal Column to Handle Information Exchanges in Supply Chains. IFIP Advances in Information and Communication Technology, 2013, , 452-459.	0.5	4
142	The CONWIP Production Control System. Classification and discussion of current and future research avenues. Journal Europeen Des Systemes Automatises, 2017, 50, 187-211.	0.3	4
143	Self-organized Holonic Manufacturing Systems Combining Adaptation and Performance Optimization. International Federation for Information Processing, 2012, , 163-170.	0.4	4
144	State of the Art and Future Trends of Optimality and Adaptability Articulated Mechanisms for		3

⁴ Manufacturing Control Systems. , 2013, , .

#	Article	IF	CITATIONS
145	Effective, energy-aware control of a production system: a potential fields approach. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 330-335.	0.4	3
146	Improving the ADACOR2 supervisor holon scheduling mechanism with genetic algorithms. AIP Conference Proceedings, 2015, , .	0.3	3
147	Al-based speed control models for the autonomous train: a literature review. , 2021, , .		3
148	Human-Machine Cooperation with Autonomous CPS in the Context of Industry 4.0: A Literature Review. Studies in Computational Intelligence, 2021, , 327-342.	0.7	3
149	Maintenance of the Autonomous Train: A Human-Machine Cooperation Framework. Lecture Notes in Mobility, 2020, , 135-148.	0.2	3
150	Roles-Based MAS Applied to the Control of Intelligent Products in FMS. Lecture Notes in Computer Science, 2011, , 185-194.	1.0	3
151	Multiâ€agent system for the reactive fleet maintenance support planning of a fleet of mobile cyber–physical systems. IET Cyber-Physical Systems: Theory and Applications, 2020, 5, 376-387.	1.9	3
152	Assessing cyberâ€physical systems to balance maintenance replacement policies and optimise longâ€run average costs for aircraft assets. IET Cyber-Physical Systems: Theory and Applications, 2019, 4, 148-155.	1.9	3
153	Cooperative patterns or how to support Human-Cyber-Physical Systems cooperation. , 2021, , .		3
154	A Vision of Applied Ethics in Industrial Cyber-Physical Sytems. Studies in Computational Intelligence, 2022, , 319-331.	0.7	3
155	Product-driven manufacturing control with embedded decisional entities. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 3986-3991.	0.4	2
156	Instantiation of the Open-Control concept in FMS based on potential fields. , 2012, , .		2
157	Service Oriented Control Framework for a Holonic System Characterized by a Guided Flow of Entities. Studies in Computational Intelligence, 2012, , 21-34.	0.7	2
158	A Nervousness Regulator Framework for Dynamic Hybrid Control Architectures. Studies in Computational Intelligence, 2016, , 199-209.	0.7	2
159	Approximate optimal method for cyclic solutions in multi-robotic cell with processing time window. Robotics and Autonomous Systems, 2017, 98, 307-316.	3.0	2
160	Ethics of Autonomous Intelligent Systems in the Human Society: Cross Views from Science, Law and Science-Fiction. Studies in Computational Intelligence, 2021, , 246-261.	0.7	2
161	A Holonic Approach to Myopic Behavior Correction for the Allocation Process in Flexible-Job Shops Using Recursiveness. Studies in Computational Intelligence, 2012, , 115-128.	0.7	2
162	Extraction of Priority Rules for Boolean Induction in Distributed Manufacturing Control. Studies in Computational Intelligence, 2014, , 127-143.	0.7	2

#	Article	IF	CITATIONS
163	Behavioural Validation of the ADACOR2 Self-organized Holonic Multi-agent Manufacturing System. Lecture Notes in Computer Science, 2015, , 59-70.	1.0	2
164	Multi-objective Truck Scheduling in a Physical Internet Road-Road Cross-docking Hub. IFAC-PapersOnLine, 2021, 54, 647-652.	0.5	2
165	Design and Use of Human Operator Digital Twins in Industrial Cyber-Physical Systems: Ethical Implications. IFAC-PapersOnLine, 2022, 55, 360-365.	0.5	2
166	A Generic Design Framework for Decentralized Management: The DMU Model. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2000, 33, 1021-1026.	0.4	1
167	Des indices de robustesse pour la méthode prudente et pour la fonction de choix de Borda. Journal of Decision Systems, 2000, 9, 269-288.	2.2	1
168	Integrated sizing support system using simulation and design of experiments. , 2009, , .		1
169	Open-control: a new concept for integrated product-driven manufacturing control. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 2065-2070.	0.4	1
170	Open manufacturing control with agile reconfiguring of robot services. , 2010, , .		1
171	Distributed Manufacturing Control with Extended CNP Interaction of Intelligent Products. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 734-739.	0.4	1
172	Using IoT in breakdown tolerance: PSO solving FJSP. , 2016, , .		1
173	Generic Routings for ConWip Sizing in a Multi-product Environment. Studies in Computational Intelligence, 2018, , 447-460.	0.7	1
174	An equivalent conversion method for dual-armed multi-cluster tool scheduling problems with multi-wafer types. International Journal of Manufacturing Technology and Management, 2019, 33, 14.	0.1	1
175	Coping with disruptions in complex systems: a framework. IFAC-PapersOnLine, 2019, 52, 2413-2418.	0.5	1
176	Specifying a Condition-Based Maintenance Decision Support System of a Fleet of Cyber-Physical Systems. Studies in Computational Intelligence, 2019, , 285-294.	0.7	1
177	A Multi-agent Model for the Multi-plant Multi-product Physical Internet Supply Chain Network. Studies in Computational Intelligence, 2021, , 435-448.	0.7	1
178	An Approach for Characterizing the Operating Modes in Dynamic Hybrid Control Architectures. Lecture Notes in Computer Science, 2015, , 108-119.	1.0	1
179	Service Orientation in Holonic and Multi-Agent Manufacturing. Studies in Computational Intelligence, 2018, , .	0.7	1
180	Méthode d'aide à la conception basée sur la réutilisation conceptuelle et logicielle. Ingenierie Des Systemes D'Information, 2008, 13, 9-33.	0.5	1

#	Article	IF	CITATIONS
181	Volatile Knowledge to Improve the Self-adaptation of Autonomous Shuttles in Flexible Job Shop Manufacturing System. Studies in Computational Intelligence, 2015, , 219-231.	0.7	1
182	Artefacts and Guidelines for Designing Sustainable Manufacturing Systems. Studies in Computational Intelligence, 2016, , 93-101.	0.7	1
183	Digital Transformation in Service and Computing Oriented Manufacturing. Studies in Computational Intelligence, 2017, , 1-7.	0.7	1
184	Cooperation Between Smart Manufacturing Scheduling Systems and Energy Providers: A Multi-agent Perspective. Studies in Computational Intelligence, 2019, , 197-210.	0.7	1
185	Human-Machine Cooperation in Self-organized Production Systems: A Point of View. Studies in Computational Intelligence, 2019, , 123-132.	0.7	1
186	Toward Efficient FMS Scheduling Through Rules Combination Using an Optimization-Simulation Mechanism. Studies in Computational Intelligence, 2022, , 559-571.	0.7	1
187	Special Session on Cooperative and Coordinated Decision in Distributed Enterprise. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2000, 33, 1019-1020.	0.4	0
188	Aerospace Applications of Soft Computing and Interval Computations (with an Emphasis on Simulation) Tj ETQo	10 0 0 rgB	T /Qverlock 1
189	Personal rapid transit in open control framework. , 2009, , .		0
190	Robustness in adaptative Holonic Multiagent Systems : the Open-Control concept. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 114-119.	0.4	0
191	An MIP approach to optimize the fundamental period of multi-cluster tools system with residency constraints. IFAC-PapersOnLine, 2015, 48, 1732-1737.	0.5	0
192	A preliminary study on integrating operation flexibility within semi-heterarchical FMS control. , 2015, , .		0
193	A dynamic hybrid control architecture for sustainable manufacturing control. IFAC-PapersOnLine, 2016, 49, 114-119.	0.5	0
194	Intelligent, smart products, and processes. Concurrent Engineering Research and Applications, 2017, 25, 3-4.	2.0	0
195	Multi-objective Cross-Docking inÂPhysical Internet Hubs Under Arrival Time Uncertainty. Studies in Computational Intelligence, 2021, , 460-472.	0.7	0
196	Ten years of SOHOMA Workshop Proceedings: A Bibliometric Analysis and Leading Trends. Studies in Computational Intelligence, 2021, , 151-168.	0.7	0
197	Active product driven control of dynamic routing in FMS. Journal Europeen Des Systemes Automatises, 2009, 43, 407-434.	0.3	0
198	Distributed and multicriteria management tools for integrated manufacturing. , 1996, , 576-588.		0

#	Article	IF	CITATIONS
199	Analysing the Impact of Rescheduling Time in Hybrid Manufacturing Control. Studies in Computational Intelligence, 2017, , 225-236.	0.7	0
200	MULTIDISCIPLINARY ENGINEERING TO SOLVE THE PROBLEM OF CONGESTIONING IN VEHICULAR SYSTEMS. Dyna (Spain), 2018, 93, 471-471.	0.1	0
201	Servitization in Train Transportation. Studies in Computational Intelligence, 2019, , 273-284.	0.7	0