David A Gregory

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8372989/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silk Fibroin as a Functional Biomaterial for Tissue Engineering. International Journal of Molecular Sciences, 2021, 22, 1499.	1.8	198
2	Electrokinetic effects in catalytic platinum-insulator Janus swimmers. Europhysics Letters, 2014, 106, 58003.	0.7	181
3	Bacterial cellulose: A smart biomaterial with diverse applications. Materials Science and Engineering Reports, 2021, 145, 100623.	14.8	120
4	Magnetic Alginate/Chitosan Nanoparticles for Targeted Delivery of Curcumin into Human Breast Cancer Cells. Nanomaterials, 2018, 8, 907.	1.9	94
5	Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Frontiers in Cardiovascular Medicine, 2020, 7, 554597.	1.1	74
6	Reactive Inkjet Printing of Biocompatible Enzyme Powered Silk Microâ€Rockets. Small, 2016, 12, 4048-4055.	5.2	57
7	Catalytic Janus Colloids: Controlling Trajectories of Chemical Microswimmers. Accounts of Chemical Research, 2018, 51, 1931-1939.	7.6	52
8	Magnetic-silk/polyethyleneimine core-shell nanoparticles for targeted gene delivery into human breast cancer cells. International Journal of Pharmaceutics, 2019, 555, 322-336.	2.6	41
9	Polyhydroxyalkanoates and their advances for biomedical applications. Trends in Molecular Medicine, 2022, 28, 331-342.	3.5	35
10	Effect of Catalyst Distribution on Spherical Bubble Swimmer Trajectories. Journal of Physical Chemistry C, 2015, 119, 15339-15348.	1.5	24
11	Cell guidance on peptide micropatterned silk fibroin scaffolds. Journal of Colloid and Interface Science, 2021, 603, 380-390.	5.0	19
12	Symmetrical Catalytically Active Colloids Collectively Induce Convective Flow. Langmuir, 2018, 34, 4307-4313.	1.6	16
13	Reactive Inkjet Printing of Functional Silk Stirrers for Enhanced Mixing and Sensing. Small, 2019, 15, e1804213.	5.2	16
14	Patterning the neuronal cells via inkjet printing of self-assembled peptides on silk scaffolds. Progress in Natural Science: Materials International, 2020, 30, 686-696.	1.8	16
15	Mussel Inspired Chemistry and Bacteria Derived Polymers for Oral Mucosal Adhesion and Drug Delivery. Frontiers in Bioengineering and Biotechnology, 2021, 9, 663764.	2.0	8
16	3D printable self-propelling sensors for the assessment of water quality via surface tension. Jcis Open, 2022, 5, 100044.	1.5	6
17	Rotating ellipsoidal catalytic micro-swimmers <i>via</i> glancing angle evaporation. Materials Advances, 2021, 2, 7045-7053.	2.6	4
18	Reactive Inkjet Printing and Propulsion Analysis of Silk-based Self-propelled Micro-stirrers. Journal of Visualized Experiments, 2019, , .	0.2	3

#	Article	IF	CITATIONS
19	Soft, Hard, and Hybrid Janus Structures: Synthesis, Self-Assembly, and Applications — Catalytic Janus Swimmers. , 2017, , 315-403.		2
20	Reactive Inkjet Printing: Reactive Inkjet Printing of Biocompatible Enzyme Powered Silk Micro-Rockets (Small 30/2016). Small, 2016, 12, 4022-4022.	5.2	1
21	CHAPTER 8. Reactive Inkjet Printing of Regenerated Silk Fibroin as a 3D Scaffold for Autonomous Swimming Devices (Micro-rockets). RSC Smart Materials, 2017, , 169-201.	0.1	0