List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8372902/publications.pdf Version: 2024-02-01

Ι ΠΝΠΝ CHEN

#	Article	IF	CITATIONS
1	Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus. Nature, 2013, 504, 411-414.	13.7	608
2	Resonant scattering and resultant pitch angle evolution of relativistic electrons by plasmaspheric hiss. Journal of Geophysical Research: Space Physics, 2013, 118, 7740-7751.	0.8	175
3	Global simulation of magnetosonic wave instability in the storm time magnetosphere. Journal of Geophysical Research, 2010, 115, .	3.3	152
4	Global simulation of EMIC wave excitation during the 21 April 2001 storm from coupled RCMâ€RAMâ€HOTRAY modeling. Journal of Geophysical Research, 2010, 115, .	3.3	120
5	Global distributions of suprathermal electrons observed on THEMIS and potential mechanisms for access into the plasmasphere. Journal of Geophysical Research, 2010, 115, .	3.3	118
6	Resonant scattering of energetic electrons by unusual low-frequency hiss. Geophysical Research Letters, 2014, 41, 1854-1861.	1.5	110
7	Simulation of EMIC wave excitation in a model magnetosphere including structured highâ€density plumes. Journal of Geophysical Research, 2009, 114, .	3.3	109
8	Modeling the evolution of chorus waves into plasmaspheric hiss. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	106
9	The controlling effect of ion temperature on EMIC wave excitation and scattering. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	104
10	Characteristics of the Poynting flux and wave normal vectors of whistlerâ€mode waves observed on THEMIS. Journal of Geophysical Research: Space Physics, 2013, 118, 1461-1471.	0.8	101
11	Observations of discrete harmonics emerging from equatorial noise. Nature Communications, 2015, 6, 7703.	5.8	93
12	Modeling the wave normal distribution of chorus waves. Journal of Geophysical Research: Space Physics, 2013, 118, 1074-1088.	0.8	91
13	Simulations of pitch angle scattering of relativistic electrons with MLTâ€dependent diffusion coefficients. Journal of Geophysical Research, 2009, 114, .	3.3	88
14	Formation of energetic electron butterfly distributions by magnetosonic waves via Landau resonance. Geophysical Research Letters, 2016, 43, 3009-3016.	1.5	88
15	Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 1. Evaluation for electrostatic electron cyclotron harmonic waves. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	86
16	Multievent study of the correlation between pulsating aurora and whistler mode chorus emissions. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	85
17	Magnetosonic wave excitation by ion ring distributions in the Earth's inner magnetosphere. Journal of Geophysical Research: Space Physics, 2014, 119, 844-852.	0.8	84
18	Threeâ€dimensional ray tracing of VLF waves in a magnetospheric environment containing a plasmaspheric plume. Geophysical Research Letters, 2009, 36, .	1.5	76

#	Article	IF	CITATIONS
19	Modeling the properties of plasmaspheric hiss: 1. Dependence on chorus wave emission. Journal of Geophysical Research, 2012, 117, .	3.3	74
20	Modeling ring current ion and electron dynamics and plasma instabilities during a highâ€speed stream driven storm. Journal of Geophysical Research, 2012, 117, .	3.3	73
21	Amplification of whistlerâ€mode hiss inside the plasmasphere. Geophysical Research Letters, 2012, 39, .	1.5	73
22	Interactions between magnetosonic waves and radiation belt electrons: Comparisons of quasiâ€linear calculations with test particle simulations. Geophysical Research Letters, 2014, 41, 4828-4834.	1.5	73
23	Perpendicular propagation of magnetosonic waves. Geophysical Research Letters, 2012, 39, .	1.5	70
24	Modulation of whistler mode chorus waves: 2. Role of density variations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	68
25	Nonlinear bounce resonances between magnetosonic waves and equatorially mirroring electrons. Journal of Geophysical Research: Space Physics, 2015, 120, 6514-6527.	0.8	68
26	Nonresonant interactions of electromagnetic ion cyclotron waves with relativistic electrons. Journal of Geophysical Research: Space Physics, 2016, 121, 9913-9925.	0.8	68
27	Direct evidence for EMIC wave scattering of relativistic electrons in space. Journal of Geophysical Research: Space Physics, 2016, 121, 6620-6631.	0.8	67
28	First observation of risingâ€ŧone magnetosonic waves. Geophysical Research Letters, 2014, 41, 7419-7426.	1.5	66
29	Storm time occurrence and spatial distribution of Pc4 poloidal ULF waves in the inner magnetosphere: A Van Allen Probes statistical study. Journal of Geophysical Research: Space Physics, 2015, 120, 4748-4762.	0.8	66
30	Magnetosonic wave instability analysis for proton ring distributions observed by the LANL magnetospheric plasma analyzer. Journal of Geophysical Research, 2011, 116, .	3.3	63
31	Nearâ€Earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations. Geophysical Research Letters, 2015, 42, 6170-6179.	1.5	62
32	Generation of multiband chorus by lower band cascade in the Earth's magnetosphere. Geophysical Research Letters, 2016, 43, 2343-2350.	1.5	62
33	Modeling the wave power distribution and characteristics of plasmaspheric hiss. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	61
34	An improved dispersion relation for parallel propagating electromagnetic waves in warm plasmas: Application to electron scattering. Journal of Geophysical Research: Space Physics, 2013, 118, 2185-2195.	0.8	56
35	Global statistical evidence for chorus as the embryonic source of plasmaspheric hiss. Geophysical Research Letters, 2013, 40, 2891-2896.	1.5	56
36	Generation of unusually low frequency plasmaspheric hiss. Geophysical Research Letters, 2014, 41, 5702-5709.	1.5	56

#	Article	IF	CITATIONS
37	The trapping of equatorial magnetosonic waves in the Earth's outer plasmasphere. Geophysical Research Letters, 2014, 41, 6307-6313.	1.5	51
38	A parametric ray tracing study of superluminous auroral kilometric radiation wave modes. Journal of Geophysical Research, 2007, 112, .	3.3	50
39	Statistical Properties of Plasmaspheric Hiss From Van Allen Probes Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 2605-2619.	0.8	50
40	First evidence for chorus at a large geocentric distance as a source of plasmaspheric hiss: Coordinated THEMIS and Van Allen Probes observation. Geophysical Research Letters, 2015, 42, 241-248.	1.5	48
41	Modulation of plasmaspheric hiss intensity by thermal plasma density structure. Geophysical Research Letters, 2012, 39, .	1.5	47
42	Twoâ€Dimensional gcPIC Simulation of Risingâ€īone Chorus Waves in a Dipole Magnetic Field. Journal of Geophysical Research: Space Physics, 2019, 124, 4157-4167.	0.8	47
43	Generation of Multiband Chorus in the Earth's Magnetosphere: 1â€Ð PIC Simulation. Geophysical Research Letters, 2017, 44, 618-624.	1.5	44
44	KINETIC ALFVÉN WAVE INSTABILITY DRIVEN BY FIELD-ALIGNED CURRENTS IN SOLAR CORONAL LOOPS. Astrophysical Journal, 2012, 754, 123.	1.6	43
45	Propagation characteristics of plasmaspheric hiss: Van Allen Probe observations and global empirical models. Journal of Geophysical Research: Space Physics, 2017, 122, 4156-4167.	0.8	43
46	Direct Observation of Subrelativistic Electron Precipitation Potentially Driven by EMIC Waves. Geophysical Research Letters, 2019, 46, 12711-12721.	1.5	41
47	Electromagnetic ion cyclotron wave modeling during the geospace environment modeling challenge event. Journal of Geophysical Research: Space Physics, 2014, 119, 2963-2977.	0.8	39
48	Spectral properties and associated plasma energization by magnetosonic waves in the Earth's magnetosphere: Particleâ€inâ€cell simulations. Journal of Geophysical Research: Space Physics, 2017, 122, 5377-5390.	0.8	39
49	Free energy to drive equatorial magnetosonic wave instability at geosynchronous orbit. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	38
50	Modeling the properties of plasmaspheric hiss: 2. Dependence on the plasma density distribution. Journal of Geophysical Research, 2012, 117, .	3.3	38
51	Periodic Excitation of Chorus and ECH Waves Modulated by Ultralow Frequency Compressions. Journal of Geophysical Research: Space Physics, 2019, 124, 8535-8550.	0.8	38
52	Modulation of chorus intensity by ULF waves deep in the inner magnetosphere. Geophysical Research Letters, 2016, 43, 9444-9452.	1.5	36
53	Van Allen Probes Observations of Chorus Wave Vector Orientations: Implications for the Chorusâ€ŧoâ€Hiss Mechanism. Geophysical Research Letters, 2019, 46, 2337-2346.	1.5	36
54	Resonant excitation of whistler waves by a helical electron beam. Geophysical Research Letters, 2016, 43, 2413-2421.	1.5	35

#	Article	IF	CITATIONS
55	Electron butterfly distribution modulation by magnetosonic waves. Geophysical Research Letters, 2016, 43, 3051-3059.	1.5	33
56	Generation of magnetosonic waves over a continuous spectrum. Journal of Geophysical Research: Space Physics, 2016, 121, 1137-1147.	0.8	33
57	Modeling of Bouncing Electron Microbursts Induced by Ducted Chorus Waves. Geophysical Research Letters, 2020, 47, e2020GL089400.	1.5	33
58	Impact of cold O+ions on the generation and evolution of EMIC waves. Journal of Geophysical Research: Space Physics, 2013, 118, 434-445.	0.8	32
59	Observations of discrete magnetosonic waves off the magnetic equator. Geophysical Research Letters, 2015, 42, 9694-9701.	1.5	32
60	A parametric study for the generation of ion Bernstein modes from a discrete spectrum to a continuous one in the inner magnetosphere. II. Particle-in-cell simulations. Physics of Plasmas, 2016, 23, .	0.7	32
61	Statistical Results of the Power Gap Between Lowerâ€Band and Upperâ€Band Chorus Waves. Geophysical Research Letters, 2019, 46, 4098-4105.	1.5	32
62	Saturation characteristics of electromagnetic ion cyclotron waves. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	31
63	Wave normal angle and frequency characteristics of magnetosonic wave linear instability. Geophysical Research Letters, 2015, 42, 4709-4715.	1.5	31
64	Fast Magnetosonic Waves Observed by Van Allen Probes: Testing Local Wave Excitation Mechanism. Journal of Geophysical Research: Space Physics, 2018, 123, 497-512.	0.8	31
65	Source of the lowâ€altitude hiss in the ionosphere. Geophysical Research Letters, 2017, 44, 2060-2069.	1.5	30
66	Whistlerâ€Mode Waves Trapped by Density Irregularities in the Earth's Magnetosphere. Geophysical Research Letters, 2021, 48, e2020GL092305.	1.5	30
67	Analysis of the Duration of Rising Tone Chorus Elements. Geophysical Research Letters, 2017, 44, 12,074.	1.5	29
68	The Characteristic Response of Whistler Mode Waves to Interplanetary Shocks. Journal of Geophysical Research: Space Physics, 2017, 122, 10,047.	0.8	29
69	Alfvénâ€cyclotron instability with singly ionized helium: Linear theory. Journal of Geophysical Research, 2012, 117, .	3.3	27
70	Kinetic Alfvén wave instability driven by fieldâ€eligned currents in a lowâ€ <i>β</i> plasma. Journal of Geophysical Research: Space Physics, 2013, 118, 2951-2957.	0.8	27
71	Observed Propagation Route of VLF Transmitter Signals in the Magnetosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 5528-5537.	0.8	27
72	Kinetic Alfvén wave instability driven by electron temperature anisotropy in high-β plasmas. Physics of Plasmas, 2010, 17, .	0.7	26

#	Article	IF	CITATIONS
73	THEMIS observations and modeling of multiple ion species and EMIC waves: Implications for a vanishing He ⁺ stop band. Journal of Geophysical Research, 2012, 117, .	3.3	26
74	In Situ Observations of Whistlerâ€Mode Chorus Waves Guided by Density Ducts. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028814.	0.8	26
75	EXCITATION OF KINETIC ALFVÉN WAVES BY FAST ELECTRON BEAMS. Astrophysical Journal, 2014, 793, 13.	1.6	25
76	Multipleâ€Satellite Observation of Magnetic Dip Event During the Substorm on 10 October 2013. Geophysical Research Letters, 2017, 44, 9167-9175.	1.5	25
77	Quasilinear analysis of saturation properties of broadband whistler mode waves. Geophysical Research Letters, 2017, 44, 8122-8129.	1.5	25
78	Local Generation of Highâ€Frequency Plasmaspheric Hiss Observed by Van Allen Probes. Geophysical Research Letters, 2019, 46, 1141-1148.	1.5	25
79	EXCITATION OF KINETIC ALFVÉN WAVES BY DENSITY STRIATION IN MAGNETO-PLASMAS. Astrophysical Journal, 2013, 771, 3.	1.6	24
80	EMIC waves growth and guiding in the presence of cold plasma density irregularities. Geophysical Research Letters, 2013, 40, 1940-1944.	1.5	24
81	Wavenumber Analysis of EMIC Waves. Geophysical Research Letters, 2019, 46, 5689-5697.	1.5	24
82	The Radiation Belt Electron Scattering by Magnetosonic Wave: Dependence on Key Parameters. Journal of Geophysical Research: Space Physics, 2017, 122, 12,338.	0.8	23
83	An improved gyrokinetic electron and fully kinetic ion particle simulation scheme: benchmark with a linear tearing mode. Plasma Physics and Controlled Fusion, 2011, 53, 054013.	0.9	22
84	A parametric study for the generation of ion Bernstein modes from a discrete spectrum to a continuous one in the inner magnetosphere. I. Linear theory. Physics of Plasmas, 2016, 23, .	0.7	22
85	Electron Cyclotron Harmonic Wave Instability by Loss Cone Distribution. Journal of Geophysical Research: Space Physics, 2018, 123, 9035-9044.	0.8	22
86	Responses of relativistic electron fluxes in the outer radiation belt to geomagnetic storms. Journal of Geophysical Research: Space Physics, 2015, 120, 9513-9523.	0.8	21
87	Whistler mode wave generation at the edges of a magnetic dip. Journal of Geophysical Research: Space Physics, 2015, 120, 2469-2476.	0.8	21
88	Transitional behavior of different energy protons based on Van Allen Probes observations. Geophysical Research Letters, 2017, 44, 625-633.	1.5	20
89	On the Origin of Ionospheric Hiss: A Conjugate Observation. Journal of Geophysical Research: Space Physics, 2017, 122, 11,784.	0.8	20
90	Magnetospheric Multiscale Observation of Quasiperiodic EMIC Waves Associated With Enhanced Solar Wind Pressure. Geophysical Research Letters, 2019, 46, 7096-7104.	1.5	20

#	Article	IF	CITATIONS
91	Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event. Journal of Geophysical Research: Space Physics, 2016, 121, 8300-8316.	0.8	19
92	Relativistic electron's butterfly pitch angle distribution modulated by localized background magnetic field perturbation driven by hot ring current ions. Geophysical Research Letters, 2017, 44, 4393-4400.	1.5	19
93	Oneâ€Dimensional Full Wave Simulation of Equatorial Magnetosonic Wave Propagation in an Inhomogeneous Magnetosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 587-599.	0.8	19
94	Ducted Chorus Waves Cause Subâ€Relativistic and Relativistic Electron Microbursts. Geophysical Research Letters, 2022, 49, .	1.5	19
95	Eigenmode analysis of compressional poloidal modes in a selfâ€consistent magnetic field. Journal of Geophysical Research: Space Physics, 2017, 122, 10,369.	0.8	18
96	Observational evidence of the drift-mirror plasma instability in Earth's inner magnetosphere. Physics of Plasmas, 2019, 26, 042110.	0.7	18
97	Direct Evidence of the Pitch Angle Scattering of Relativistic Electrons Induced by EMIC Waves. Geophysical Research Letters, 2020, 47, e2019GL085637.	1.5	18
98	A Theoretical Framework of Chorus Wave Excitation. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	18
99	Modeling Energetic Electron Nonlinear Waveâ€Particle Interactions With Electromagnetic Ion Cyclotron Waves. Journal of Geophysical Research: Space Physics, 2019, 124, 3436-3453.	0.8	17
100	Repetitive Emissions of Risingâ€Tone Chorus Waves in the Inner Magnetosphere. Geophysical Research Letters, 2021, 48, e2021GL094979.	1.5	17
101	Electron Microbursts Induced by Nonducted Chorus Waves. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	16
102	Comparison of formulas for resonant interactions between energetic electrons and oblique whistler-mode waves. Physics of Plasmas, 2015, 22, 052902.	0.7	15
103	A possible mechanism for the formation of filamentous structures in magnetoplasmas by kinetic Alfvén waves. Journal of Geophysical Research: Space Physics, 2015, 120, 61-69.	0.8	14
104	Generation of Lower Harmonic Magnetosonic Waves Through Nonlinear Waveâ€Wave Interactions. Geophysical Research Letters, 2018, 45, 8029-8034.	1.5	14
105	Instability in a relativistic magnetized plasma. Physics of Plasmas, 2019, 26, 042902.	0.7	14
106	On the Observation of Electrostatic Harmonics Associated With EMIC Waves. Geophysical Research Letters, 2019, 46, 14274-14281.	1.5	14
107	Statistical Characteristics of Ionospheric Hiss Waves. Geophysical Research Letters, 2019, 46, 7147-7156.	1.5	13
108	Simultaneous Observations of ELF/VLF Risingâ€Tone Quasiperiodic Waves and Energetic Electron Precipitations in the High‣atitude Upper Ionosphere. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027574.	0.8	13

LUNJIN CHEN

#	Article	IF	CITATIONS
109	Direct Evidence Reveals Transmitter Signal Propagation in the Magnetosphere. Geophysical Research Letters, 2021, 48, e2021GL093987.	1.5	13
110	Coherently modulated whistler mode waves simultaneously observed over unexpectedly large spatial scales. Journal of Geophysical Research: Space Physics, 2017, 122, 1871-1882.	0.8	12
111	On the Diffusion Rates of Electron Bounce Resonant Scattering by Magnetosonic Waves. Geophysical Research Letters, 2018, 45, 3328-3337.	1.5	12
112	Twoâ€Dimensional Particleâ€inâ€Cell Simulation of Magnetosonic Wave Excitation in a Dipole Magnetic Field. Geophysical Research Letters, 2018, 45, 8712-8720.	1.5	12
113	Statistical Study on Locally Generated Highâ€Frequency Plasmaspheric Hiss and Its Effect on Suprathermal Electrons: Van Allen Probes Observation and Quasiâ€linear Simulation. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028526.	0.8	12
114	The Relation Between Electron Cyclotron Harmonic Waves and Plasmapause: Case and Statistical Studies. Geophysical Research Letters, 2020, 47, e2020GL087365.	1.5	12
115	An Unexpected Whistler Wave Generation Around Dipolarization Front. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028957.	0.8	12
116	Modeling the storm time behavior of the magnetosonic waves using solar wind parameters. Journal of Geophysical Research: Space Physics, 2016, 121, 446-458.	0.8	11
117	Spectral Broadening of NWC Transmitter Signals in the Ionosphere. Geophysical Research Letters, 2020, 47, e2020GL088103.	1.5	11
118	Particleâ€inâ€Cell Simulation of Electron Cyclotron Harmonic Waves Driven by a Loss Cone Distribution. Geophysical Research Letters, 2020, 47, e2020GL087649.	1.5	11
119	Twoâ€Dimensional Fullâ€Wave Simulation of Whistler Mode Wave Propagation Near the Local Lower Hybrid Resonance Frequency in a Dipole Field. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027750.	0.8	11
120	Chorus Acceleration of Relativistic Electrons in Extremely Low Lâ€5hell During Geomagnetic Storm of August 2018. Geophysical Research Letters, 2020, 47, e2019GL086226.	1.5	11
121	The Angular Distribution of Lower Band Chorus Waves Near Plasmaspheric Plumes. Geophysical Research Letters, 2022, 49, .	1.5	11
122	Examining Wave Vector and Minimum Cyclotron Resonant Electron Energy of EMIC Waves With Magnetospheric Multiscale Mission. Geophysical Research Letters, 2018, 45, 10,138.	1.5	10
123	On the Impacts of Ions of Ionospheric Origin and Their Composition on Magnetospheric EMIC Waves. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	9
124	A Three-Dimensional Ray-Tracing Study of R-X Mode Waves during High Geomagnetic Activity. Chinese Physics Letters, 2008, 25, 340-343.	1.3	8
125	Van Allen Probes observations of whistlerâ€mode chorus with longâ€lived oscillating tones. Geophysical Research Letters, 2017, 44, 5909-5919	1.5	8
126	An Event on Simultaneous Amplification of Exohiss and Chorus Waves Associated With Electron Density Enhancements. Journal of Geophysical Research: Space Physics, 2018, 123, 8958-8968.	0.8	8

#	Article	IF	CITATIONS
127	Particleâ€inâ€Cell Simulation of Risingâ€Tone Magnetosonic Waves. Geophysical Research Letters, 2020, 47, e2020GL089671.	1.5	8
128	Wave Normal Angle Distribution of Magnetosonic Waves in the Earth's Magnetosphere: 2â€Đ <scp>PIC</scp> Simulation. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028012.	0.8	8
129	Particleâ€inâ€Cell Simulations of Characteristics of Risingâ€Tone Chorus Waves in the Inner Magnetosphere. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027961.	0.8	8
130	Conjugate Observation of Magnetospheric Chorus Propagating to the Ionosphere by Ducting. Geophysical Research Letters, 2021, 48, e2021GL095933.	1.5	8
131	Statistical Analysis on Plasmatrough Exohiss Waves From the Van Allen Probes. Journal of Geophysical Research: Space Physics, 2019, 124, 4356-4364.	0.8	7
132	Modulation of Locally Generated Equatorial Noise by ULF Wave. Journal of Geophysical Research: Space Physics, 2019, 124, 2779-2787.	0.8	7
133	ULFâ€Modulation of Whistlerâ€Mode Waves in the Inner Magnetosphere During Solar Wind Compression. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029353.	0.8	7
134	North west cape-induced electron precipitation and theoretical simulation. Chinese Physics B, 2016, 25, 119401.	0.7	6
135	The Effects of Localized Thermal Pressure on Equilibrium Magnetic Fields and Particle Drifts in The Inner Magnetosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 5129-5142.	0.8	6
136	Alpha Transmitter Signal Reflection and Triggered Emissions. Geophysical Research Letters, 2020, 47, e2020GL090165.	1.5	6
137	Global Simulation of Electron Cyclotron Harmonic Wave Instability in a Stormâ€Time Magnetosphere. Geophysical Research Letters, 2020, 47, e2019GL086368.	1.5	6
138	A Statistical Study of Lower Hybrid Waves in the Earth's Magnetosphere by Van Allen Probes. Geophysical Research Letters, 2021, 48, e2021GL093168.	1.5	6
139	Competitive Influences of Different Plasma Waves on the Pitch Angle Distribution of Energetic Electrons Inside and Outside Plasmasphere. Geophysical Research Letters, 2022, 49, .	1.5	6
140	Effects of Spatial Variation of Thermal Electrons on Whistler-Mode Waves in Magnetosphere. Chinese Physics Letters, 2006, 23, 2613-2616.	1.3	5
141	Triggered Plasmaspheric Hiss: Rising Tone Structures. Geophysical Research Letters, 2019, 46, 5034-5044.	1.5	5
142	Electronâ€Driven Magnetic Dip Embedded Within the Protonâ€Driven Magnetic Dip and the Related Echoes of Butterfly Distribution of Relativistic Electrons. Geophysical Research Letters, 2020, 47, e2020GL088983.	1.5	5
143	Frequencyâ€Dependent Modulation of Whistlerâ€Mode Waves by Density Irregularities During the Recovery Phase of a Geomagnetic Storm. Geophysical Research Letters, 2021, 48, e2021GL093095.	1.5	5
144	Superposed Epoch Analyses of Electronâ€Driven and Protonâ€Driven Magnetic Dips. Geophysical Research Letters, 2021, 48, e2021GL094934.	1.5	5

LUNJIN CHEN

#	Article	IF	CITATIONS
145	Statistical Study of Chorus Modulations by Background Magnetic Field and Plasma Density. Geophysical Research Letters, 2020, 47, e2020GL089344.	1.5	5
146	Statistical Study on Smallâ€6cale (â‰≇,000Âkm) Density Irregularities in the Inner Magnetosphere. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	5
147	Asymmetric drift instability of magnetosonic waves in anisotropic plasmas. Physics of Plasmas, 2016, 23, 102107.	0.7	4
148	Two Dimensional Fullâ€Wave Modeling of Propagation of Lowâ€Altitude Hiss in the Ionosphere. Geophysical Research Letters, 2020, 47, e2019GL086601.	1.5	4
149	Modulation of Whistler Mode Waves by Ionâ€Scale Waves Observed in the Distant Magnetotail. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027278.	0.8	4
150	Ion Cyclotron Resonant Absorption Lines in ELF Hiss Power Spectral Density in the Low‣atitude Ionosphere. Geophysical Research Letters, 2020, 47, e2019GL086315.	1.5	4
151	Observational Evidence of the Excitation of Magnetosonic Waves by an He ⁺⁺ Ion Ring Distribution. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029532.	0.8	4
152	The Response of the Energy Content of the Outer Electron Radiation Belt to Geomagnetic Storms. Journal of Geophysical Research: Space Physics, 2018, 123, 8227-8240.	0.8	3
153	Ion heating by fast magnetosonic waves and ring current-electron radiation belt coupling. , 2011, , .		2
154	An oscillator model representative of electron interactions with EMIC waves. Journal of Geophysical Research: Space Physics, 2014, 119, 1951-1959.	0.8	2
155	UBER v1.0: a universal kinetic equation solver for radiation belts. Geoscientific Model Development, 2021, 14, 5825-5842.	1.3	2
156	Propagation of Superluminous L–O Mode Waves During Geomagnetic Activities. Plasma Science and Technology, 2008, 10, 546-550.	0.7	1
157	Generation of unusually low frequency plasmaspheric hiss. , 2014, , .		1
158	Radiation pattern of a ULF space-based antenna for controlled removal of energetic trapped protons. , 2015, , .		1
159	STUDY OF UPML ABSORBING BOUNDARY CONDITION FOR THE FIVE-STEP LOD-FDTD METHOD. Progress in Electromagnetics Research M, 2016, 47, 181-189.	0.5	1
160	Theoretical Prediction of Asymmetric Instability of Drift Kinetic Alfven Waves in Anisotropic Plasmas. Journal of Geophysical Research: Space Physics, 2019, 124, 4414-4423.	0.8	1
161	ELECTROMAGNETIC CHARACTERISTICS OF 1D GRAPHEME PHOTONIC CRYSTAL BY USING SBC-FDTD METHOD OF OBLIQUE INCIDENCE IN THZ. Progress in Electromagnetics Research M, 2015, 43, 135-145.	0.5	1
162	Phase trapping and phase bunching: Nonlinear acceleration and deceleration of riadation belt electrons. , 2014, , .		0

#	Article	IF	CITATIONS
163	L–H power threshold studies with tungsten/carbon divertor on the EAST tokamak. Radiation Effects and Defects in Solids, 2016, 171, 359-373.	0.4	0
164	Wave-particle interactions with coherent magnetosonic waves. , 2020, , 99-120.		0
165	Whistler Waves above the Lower Hybrid Frequency in the Ionosphere and their Counterparts in the Magnetosphere. Geophysical Research Letters, 0, , .	1.5	0