Yinghua Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8372766/publications.pdf

Version: 2024-02-01

430754 501076 45 801 18 28 h-index citations g-index papers 47 47 47 896 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Experimental Observation of the Ion–Ion Correlation Effects on Charge Inversion and Strong Adhesion between Mica Surfaces in Aqueous Electrolyte Solutions. Langmuir, 2014, 30, 10845-10854.	1.6	57
2	Highly Charged Particles Cause a Larger Current Blockage in Micropores Compared to Neutral Particles. ACS Nano, 2016, 10, 8413-8422.	7.3	57
3	Pores with Longitudinal Irregularities Distinguish Objects by Shape. ACS Nano, 2015, 9, 4390-4397.	7. 3	55
4	Modulation of Ionic Current Rectification in Ultrashort Conical Nanopores. Analytical Chemistry, 2020, 92, 16188-16196.	3.2	48
5	Drastically Reduced Ion Mobility in a Nanopore Due to Enhanced Pairing and Collisions between Dehydrated Ions. Journal of the American Chemical Society, 2019, 141, 4264-4272.	6.6	46
6	Direction Dependence of Resistive-Pulse Amplitude in Conically Shaped Mesopores. Analytical Chemistry, 2016, 88, 4917-4925.	3.2	42
7	Visualization of Hydrogen Evolution at Individual Platinum Nanoparticles at a Buried Interface. Journal of the American Chemical Society, 2020, 142, 8890-8896.	6.6	40
8	Viscosity and Conductivity Tunable Diode-like Behavior for Meso- and Micropores. Journal of Physical Chemistry Letters, 2017, 8, 3846-3852.	2.1	34
9	Anomalous Mobility of Highly Charged Particles in Pores. Analytical Chemistry, 2015, 87, 8517-8523.	3.2	33
10	Abnormal Ionic-Current Rectification Caused by Reversed Electroosmotic Flow under Viscosity Gradients across Thin Nanopores. Analytical Chemistry, 2019, 91, 996-1004.	3.2	32
11	Optimal design of graphene nanopores for seawater desalination. Journal of Chemical Physics, 2018, 148, 014703.	1.2	30
12	Prewetting Polypropylene-Wood Pulp Fiber Composite Nonwoven Fabric for Oil–Water Separation. ACS Applied Materials & Diterfaces, 2020, 12, 46923-46932.	4.0	30
13	Ionic Behavior in Highly Concentrated Aqueous Solutions Nanoconfined between Discretely Charged Silicon Surfaces. Langmuir, 2016, 32, 4806-4814.	1.6	26
14	Capacitance Performance of Sub-2 nm Graphene Nanochannels in Aqueous Electrolyte. Journal of Physical Chemistry C, 2015, 119, 23813-23819.	1.5	25
15	Effect of nanopore size on poly(dT)30 translocation through silicon nitride membrane. Science China Technological Sciences, 2013, 56, 2398-2402.	2.0	21
16	Role of Particle Focusing in Resistive-Pulse Technique: Direction-Dependent Velocity in Micropores. ACS Nano, 2016, 10, 3509-3517.	7.3	21
17	High-performance nanofluidic osmotic power generation enabled by exterior surface charges under the natural salt gradient. Journal of Power Sources, 2021, 492, 229637.	4.0	21
18	Significantly Enhanced Performance of Nanofluidic Osmotic Power Generation by Slipping Surfaces of Nanopores. Journal of Physical Chemistry C, 2021, 125, 14195-14203.	1.5	18

#	Article	IF	Citations
19	Effects of Surface Trapping and Contact Ion Pairing on Ion Transport in Nanopores. Journal of Physical Chemistry C, 2019, 123, 15314-15322.	1.5	17
20	Effective Charged Exterior Surfaces for Enhanced Ionic Diffusion through Nanopores under Salt Gradients. Journal of Physical Chemistry Letters, 2022, 13, 5669-5676.	2.1	17
21	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">S</mml:mi><mml:msub><mml:mi mathvariant="normal">i</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">N</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow> nanopores.	0.8	16
22	Physical Review E, 2015, 92, 022719. A hybrid resistive pulse-optical detection platform for microfluidic experiments. Scientific Reports, 2017, 7, 10173.	1.6	13
23	Probing charges on solid–liquid interfaces with the resistive-pulse technique. Nanoscale, 2017, 9, 13527-13537.	2.8	13
24	Ion and water transport in charge-modified graphene nanopores. Chinese Physics B, 2015, 24, 108201.	0.7	11
25	Experimental Investigation of Dynamic Deprotonation/Protonation of Highly Charged Particles. Journal of Physical Chemistry C, 2017, 121, 6255-6263.	1.5	11
26	Optimal voltage for nanoparticle detection with thin nanopores. Analyst, The, 2018, 143, 4638-4645.	1.7	11
27	Electrochemical Generation of Individual Nanobubbles Comprising H ₂ , D ₂ , and HD. Langmuir, 2020, 36, 6073-6078.	1.6	11
28	Electrochemical Reduction of [Ni(Mebpy) ₃] ²⁺ : Elucidation of the Redox Mechanism by Cyclic Voltammetry and Steadyâ€State Voltammetry in Low Ionic Strength Solutions. ChemElectroChem, 2020, 7, 1473-1479.	1.7	11
29	lon specificity in NaCl solution confined in silicon nanochannels. Science China Technological Sciences, 2014, 57, 230-238.	2.0	10
30	Field-enhanced water transport in sub-nanometer graphene nanopores. Desalination, 2022, 528, 115610.	4.0	10
31	Counterions and water molecules in charged silicon nanochannels: the influence of surface charge discreteness. Molecular Simulation, 2015, 41, 1187-1192.	0.9	6
32	Investigation of charge inversion in silicon nanochannels with molecular dynamics simulation. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 2016, 230, 51-54.	0.5	3
33	Water and ion distributions in a silicon nanochannel: a molecular dynamics study. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2012, 226, 31-34.	0.1	2
34	A New Procedure for Measuring Particle Length using the Resistive Pulse Technique with Irregular Single Micropores. Biophysical Journal, $2016,110,506$ a- 507 a.	0.2	1
35	Nanopore Fabrication in Ultrathin HFO2 Membranes for Nanopore-Based DNA Sequencing. Biophysical Journal, 2018, 114, 179a.	0.2	1
36	The Effects of lons and Surface Charge Density on Water Distribution in Silicon Nanochannel. , 2012, , .		0

#	Article	IF	CITATIONS
37	Charge Inversion of Mica Surface in Multivalent Electrolytes. , 2013, , .		O
38	lonic current investigation in silicon nanochannels with molecular dynamics simulations. , 2013, , .		0
39	Anomalous Transit Time and Pulse Amplitude of Highly Charged Particles in Resistive Pulsing. Biophysical Journal, 2016, 110, 506a.	0.2	O
40	Time Irreversibility of Particles Passage through a Corrugated Micropore. Biophysical Journal, 2016, 110, 655a.	0.2	0
41	Salt Rejection using Conically Shaped Pores with Patterned Surface Charges. Biophysical Journal, 2017, 112, 25a.	0.2	O
42	The Investigation of Dynamic Changes of the Particle Surface Charge with Resistive-Pulse Technique. Biophysical Journal, 2017, 112, 331a.	0.2	0
43	Viscosity and Conductivity Tunable Diode-Like Behavior for MESO- and Micropores. Biophysical Journal, 2018, 114, 304a-305a.	0.2	O
44	Deformability of Individual Cells Probed by Electrical and Optical Signals. Biophysical Journal, 2018, 114, 192a.	0.2	0
45	Photothermally-Assisted Lipid Bilayer Coating on a Sin Nanopore for High-Throughput Protein Channel Formation. Biophysical Journal, 2019, 116, 294a.	0.2	0