Marc J J Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8372541/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laser surface micro-texturing of Ti–6Al–4V substrates for improved cell integration. Applied Surface Science, 2007, 253, 7738-7743.	6.1	121
2	Effect of beam angle on HAZ, recast and oxide layer characteristics in laser drilling of TBC nickel superalloys. International Journal of Machine Tools and Manufacture, 2006, 46, 1972-1982.	13.4	108
3	The forming of mild steel plates with a 2.5 kW high power diode laser. International Journal of Machine Tools and Manufacture, 2001, 41, 967-977.	13.4	72
4	Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid. Journal of Nanoparticle Research, 2009, 11, 1421-1427.	1.9	70
5	An investigation into the feasibility and characteristics of using a 2.5 kW high power diode laser for paint stripping. Journal of Materials Processing Technology, 2003, 138, 109-115.	6.3	40
6	Removal of chlorinated rubber coatings from concrete surfaces using an RF excited CO2 laser. Journal of Materials Processing Technology, 2001, 114, 139-144.	6.3	35
7	Generation of titanium-oxide nanoparticles in liquid using a high-power, high-brightness continuous-wave fiber laser. Applied Physics A: Materials Science and Processing, 2008, 91, 365-368.	2.3	33
8	Characteristics of high power diode laser removal of multilayer chlorinated rubber coatings from concrete surfaces. Optics and Laser Technology, 1999, 31, 171-180.	4.6	32
9	Laser-assisted generation of self-assembled microstructures onÂstainless steel. Applied Physics A: Materials Science and Processing, 2008, 93, 117-122.	2.3	28
10	Preliminary study into the effects of YAG laser processing of titanium 6Al–4V alloy for potential aerospace component cleaning application. Applied Surface Science, 2005, 247, 623-630.	6.1	26
11	Fracture behaviour of an anisotropic polygranular graphite (PGA). Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 558, 265-277.	5.6	26
12	Generation of metal-oxide nanoparticles using continuous-wave fibre laser ablation in liquid. Journal of Micromechanics and Microengineering, 2009, 19, 054008.	2.6	23
13	Laser processing of yttria stabilised zirconia/alumina coatings on Fecralloy substrates. Surface and Coatings Technology, 2004, 187, 370-376.	4.8	21
14	Monitoring laser cleaning of titanium alloys by probe beam reflection and emission spectroscopy. Applied Physics A: Materials Science and Processing, 2008, 93, 123-127.	2.3	21
15	Comparison of high power diode laser and Nd:YAG laser microwelding of k-type thermocouples. Journal of Materials Processing Technology, 2003, 138, 102-108.	6.3	19
16	Transient thermal finite element analysis of CFC–Cu ITER monoblock using X-ray tomography data. Fusion Engineering and Design, 2015, 100, 100-111.	1.9	19
17	Excimer laser ablation and film deposition of Ti:sapphire. Applied Surface Science, 1996, 96-98, 849-854.	6.1	17
18	Ash characteristics in controlled diode laser pyrolysis of chlorinated rubber. Optics and Laser Technology, 2000, 32, 49-57.	4.6	17

Marc J J Schmidt

#	Article	IF	CITATIONS
19	High power diode laser surface treatment of mullite crucible material. Applied Surface Science, 2000, 168, 9-12.	6.1	17
20	Ablation of a chlorinated rubber polymer and TiO2 ceramic mixture with a Nd:YAG laser. Applied Surface Science, 2000, 154-155, 53-59.	6.1	16
21	Three-dimensional transient finite element analysis of the laser enamelling process and moving heat source and phase change considerations. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2003, 217, 753-764.	2.4	16
22	Formation of highly organised, periodic microstructures on steel surfaces upon pulsed laser irradiation. Applied Physics A: Materials Science and Processing, 2009, 95, 447-452.	2.3	16
23	Thermal history analysis of surface heating of mild steel with different laser beam geometries. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2006, 220, 1549-1557.	2.1	15
24	Thermal characterisation of ceramic/metal joining techniques for fusion applications using X-ray tomography. Fusion Engineering and Design, 2014, 89, 826-836.	1.9	13
25	Removal of chlorinated rubber coatings from concrete surfaces using a 120-W high power diode laser. Surface and Coatings Technology, 2001, 141, 40-47.	4.8	10
26	Spectroscopic characteristics of the plume generated during laser ablation of a ceramic–polymer composite. Applied Surface Science, 2000, 168, 170-174.	6.1	8
27	Growth of patterned thin metal oxide films on glass substrates from metallic bulk sources using a Q-switched YAG laser. Applied Surface Science, 2005, 248, 204-208.	6.1	8
28	Laser ablation of a B4C–polysiloxane composite. Applied Surface Science, 2002, 186, 271-275.	6.1	6
29	Removal of embedded contamination in chlorinated rubber coatings using a portable high power diode laser. Journal of Laser Applications, 2000, 12, 134-141.	1.7	3
30	Surface modification of OPC-based cement using a frequency doubled Nd:YAG laser system. Applied Surface Science, 2002, 186, 75-79.	6.1	3
31	A portable high-power diode laser-based single-stage ceramic tile grout sealing system. Optics and Laser Technology, 2002, 34, 27-36.	4.6	3
32	Wettability analysis of laser deposited Ti:Sapphire. Applied Surface Science, 2003, 208-209, 651-657.	6.1	2
33	Materials behaviour and process characteristics in the removal of industrial cement tile grout using a 1.5 kW diode laser. Thin Solid Films, 2004, 453-454, 52-58.	1.8	2
34	Efficient generation of titanium oxide nanomaterials using a continuous wave high-power fibre laser. , 2007, , .		2
35	The use of carbon to improve the pressureless sintering of uranium diboride. Journal of Nuclear Materials, 2022, 562, 153581.	2.7	1
36	Selective area laser deposition of FCC beta silicon carbide. Crystal Research and Technology, 2016, 51, 441-445.	1.3	0

#	Article	IF	CITATIONS
37	The effects of the metallic substrate type during high power diode laser removal of chlorinated rubber coatings. , 2000, , 475-480.		0