List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8372026/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vapor-Phase Molecular Doping in Covalent Organosiloxane Network Thin Films Via a Lewis Acid–Base Interaction for Enhanced Mechanical Properties. ACS Applied Materials & Interfaces, 2022, 14, 22719-22727.	4.0	6
2	Encapsulation of Phase Change Materials via Interfacial Miniemulsion Polymerization for High Thermal Energy Storage Density. Macromolecular Reaction Engineering, 2022, 16, .	0.9	5
3	Intrinsically Anisotropic Dielectric Elastomer Fiber Actuators. , 2022, 4, 472-479.		16
4	Improving the Performance of the SiO/C Anode by Employing the Triblock Copolymer Binder and Copper Nanowires. Energy & Fuels, 2022, 36, 4557-4563.	2.5	0
5	Significantly enhancing electro-actuation performance of dielectric elastomer with ZrO2 nanoparticles. Composites Science and Technology, 2022, 227, 109543.	3.8	2
6	Stretchâ€Activated Reprogrammable Shapeâ€Morphing Composite Elastomers. Advanced Functional Materials, 2022, 32, .	7.8	7
7	Spatially Modulus-Patterned dielectric elastomer actuators with oriented electroactuation. Chemical Engineering Journal, 2022, 449, 137734.	6.6	4
8	Ultrasoft-yet-strong pentablock copolymer as dielectric elastomer highly responsive to low voltages. Chemical Engineering Journal, 2021, 405, 126634.	6.6	23
9	Pre-programed hydroxy double salt templates for room-temperature controlled synthesis of mixed-metal zeolitic imidazolate frameworks. Journal of Materials Chemistry A, 2021, 9, 18557-18563.	5.2	8
10	Adaptively reconstructing network of soft elastomers to increase strand rigidity: towards free-standing electro-actuation strain over 100%. Materials Horizons, 2021, 8, 2834-2841.	6.4	17
11	Self-powered soft robot in the Mariana Trench. Nature, 2021, 591, 66-71.	13.7	545
12	Self‧trengthening Dielectric Elastomer of Triblock Copolymer with Significantly Improved Electromechanical Performance under Low Voltage. Macromolecular Materials and Engineering, 2021, 306, 2000732.	1.7	8
13	Electromechanical Model-Based Adaptive Control of Multilayered Dielectric Elastomer Bending Actuator. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	1.1	3
14	A stretchable all-solid-state polymer electrolyte with decoupled ion transport and mechanical supporting networks to achieve high and stable ion-conductivity. Solid State Ionics, 2021, 370, 115733.	1.3	4
15	End-block-curing ABA triblock copolymer towards dielectric elastomers with both high electro-mechanical performance and excellent mechanical properties. Chemical Engineering Journal, 2020, 382, 123037.	6.6	21
16	Structural tuning of polycaprolactone based thermadapt shape memory polymer. Polymer Chemistry, 2020, 11, 1369-1374.	1.9	57
17	Dielectric elastomer film with anisotropic actuation deformation on film plane. Journal of Applied Polymer Science, 2020, 137, 48795.	1.3	5
18	Copolymerized Sulfur with Intrinsically Ionic Conductivity, Superior Dispersibility, and Compatibility for All-Solid-State Lithium Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 12100-12109.	3.2	10

#	Article	IF	CITATIONS
19	Synthesis of (hard-soft-hard)x multiblock copolymers via RAFT emulsion polymerization and mechanical enhancement via block architectures. Polymer, 2020, 201, 122602.	1.8	13
20	Bioinspired Multifunctional Cellular Plastics with a Negative Poisson's Ratio for High Energy Dissipation. Advanced Materials, 2020, 32, e2001222.	11.1	64
21	Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. Biomaterials, 2020, 240, 119902.	5.7	144
22	Anisotropic electroactive elastomer for highly maneuverable soft robotics. Nanoscale, 2020, 12, 7514-7521.	2.8	44
23	Light-triggered topological programmability in a dynamic covalent polymer network. Science Advances, 2020, 6, eaaz2362.	4.7	75
24	Highâ€5afety Allâ€5olidâ€5tate Lithiumâ€lon Battery Working at Ambient Temperature with Inâ€Situ UV u Polymer Electrolyte on the Electrode. ChemElectroChem, 2020, 7, 2599-2607.	iring P.7	14
25	Significantly Suppressed Chain Transfer to Monomer Reactions in RAFT Emulsion Polymerization of Styrene. Industrial & Engineering Chemistry Research, 2019, 58, 20969-20975.	1.8	2
26	Influence of copolymer chain sequence on electrode latex binder for lithium-ion batteries. Colloid and Polymer Science, 2019, 297, 1287-1299.	1.0	3
27	Preparation of Soft Shape Memory Polymer and Its Application as a Compliant Thermalâ€Triggered Gripper. Macromolecular Chemistry and Physics, 2019, 220, 1900229.	1.1	9
28	Highly bright and stable electroluminescent devices with extraordinary stretchability and ultraconformability. Journal of Materials Chemistry C, 2019, 7, 484-489.	2.7	18
29	Drilling by light: ice-templated photo-patterning enabled by a dynamically crosslinked hydrogel. Materials Horizons, 2019, 6, 1013-1019.	6.4	48
30	Electrically tunable fast and reversible structural coloration of two-dimensional photonic crystals. Smart Materials and Structures, 2019, 28, 115019.	1.8	8
31	Mechanoâ€Plastic Pyrolysis of Dynamic Covalent Polymer Network toward Hierarchical 3D Ceramics. Advanced Materials, 2019, 31, e1807326.	11.1	46
32	Development of a Highly Sensitive, Broad-Range Hierarchically Structured Reduced Graphene Oxide/PolyHIPE Foam for Pressure Sensing. ACS Applied Materials & Interfaces, 2019, 11, 4318-4327.	4.0	83
33	Morphology and mechanical properties of Acrylonitrileâ€styreneâ€acrylate toughened plastics with block copolymer chain structure. Polymer Engineering and Science, 2019, 59, 389-395.	1.5	3
34	A new low moduli dielectric elastomer nano-structured composite with high permittivity exhibiting large actuation strain induced by low electric field. Composites Science and Technology, 2018, 156, 151-157.	3.8	41
35	Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors. Nanotechnology, 2018, 29, 145704.	1.3	10
36	Achieving a high loading Si anode <i>via</i> employing a triblock copolymer elastomer binder, metal nanowires and a laminated conductive structure. Journal of Materials Chemistry A, 2018, 6, 20982-20991.	5.2	28

#	Article	IF	CITATIONS
37	Synthesis of Well-Defined Polystyrene with Molar Mass Exceeding 500 kg/mol by RAFT Emulsion Polymerization. ACS Symposium Series, 2018, , 81-106.	0.5	1
38	The tough microcapsules of acrylic acid–styrene–isoprene–styrene quadrablock copolymer shell via Pickering emulsion technique. Journal of Applied Polymer Science, 2018, 135, 46700.	1.3	3
39	Dynamic Covalent Polymer Networks: from Old Chemistry to Modern Day Innovations. Advanced Materials, 2017, 29, 1606100.	11.1	691
40	Significantly improved electromechanical performance of dielectric elastomers via alkyl side-chain engineering. Journal of Materials Chemistry C, 2017, 5, 6834-6841.	2.7	25
41	Control over ABA-type triblock copolymer latex morphology in RAFT miniemulsion polymerization and mechanical properties of the latex films. Colloid and Polymer Science, 2017, 295, 891-902.	1.0	9
42	Fast-moving soft electronic fish. Science Advances, 2017, 3, e1602045.	4.7	621
43	Particle activation/deactivation effect in RAFT emulsion polymerization of styrene. Reaction Chemistry and Engineering, 2017, 2, 159-167.	1.9	6
44	High-performance stretchable electrodes prepared from elastomeric current collectors and binders. Journal of Materials Chemistry A, 2017, 5, 21550-21559.	5.2	14
45	Modification of bitumen emulsion via heterocoagulation with SIS triblock copolymer latex. Journal of Applied Polymer Science, 2017, 134, 45510.	1.3	8
46	Thermoplastic Dielectric Elastomer of Triblock Copolymer with High Electromechanical Performance. Macromolecular Rapid Communications, 2017, 38, 1700268.	2.0	30
47	Highly stretchable, transparent, and colorless electrodes from a diblock copolymer electrolyte. Journal of Materials Chemistry C, 2017, 5, 9865-9872.	2.7	5
48	Polyhydroxyurethanes (PHUs) Derived from Diphenolic Acid and Carbon Dioxide and Their Application in Solvent- and Water-Borne PHU Coatings. Industrial & Engineering Chemistry Research, 2017, 56, 14089-14100.	1.8	32
49	Core–shell nano-latex blending method to prepare multi-shape memory polymers. Soft Matter, 2017, 13, 5324-5331.	1.2	8
50	Unusual Aspects of Supramolecular Networks: Plasticity to Elasticity, Ultrasoft Shape Memory, and Dynamic Mechanical Properties. Advanced Functional Materials, 2016, 26, 931-937.	7.8	66
51	A new scalable-up approach to non-iridescent structural blue films with relatively high tensile properties via RAFT emulsion polymerization. Polymer, 2016, 106, 285-293.	1.8	9
52	The Morphology and Mechanical Properties of the Hybrid Films of Styreneâ€Butyl Acrylate Block Copolymer/MMT From Colloid Blending. Macromolecular Reaction Engineering, 2016, 10, 63-70.	0.9	3
53	Kinetics of RAFT emulsion polymerization of styrene mediated by oligo(acrylic acidâ€ <i>b</i> â€styrene) trithiocarbonate. AICHE Journal, 2016, 62, 2126-2134.	1.8	10
54	Core–shell particles of poly(methyl methacrylate)â€ <i>block</i> â€poly(<i>n</i> â€butyl acrylate) synthesized via reversible addition–fragmentation chainâ€ŧransfer emulsion polymerization and the polymer's application in toughening polycarbonate. Journal of Applied Polymer Science, 2016, 133, .	1.3	7

#	Article	IF	CITATIONS
55	Employing Gradient Copolymer To Achieve Gel Polymer Electrolytes with High Ionic Conductivity. Macromolecules, 2016, 49, 2179-2188.	2.2	26
56	Multi-shape memory polymers achieved by the spatio-assembly of 3D printable thermoplastic building blocks. Soft Matter, 2016, 12, 3226-3233.	1.2	27
57	Shape memory polymer network with thermally distinct elasticity and plasticity. Science Advances, 2016, 2, e1501297.	4.7	406
58	A Novel Method for Preparing Click-Ready Latex and Latex with Stability against High Electrolyte Concentrations. Industrial & Engineering Chemistry Research, 2015, 54, 5536-5542.	1.8	5
59	Polyethylene battery separator with autoâ€shutdown ability, thermal stability of 220°C, and hydrophilic surface via solidâ€state ultraviolet irradiation. Journal of Applied Polymer Science, 2015, 132, .	1.3	14
60	Mechanical properties of gradient copolymers of styrene and <i>n</i> -butyl acrylate. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 860-868.	2.4	35
61	Correlation between polydispersities of molecular weight distribution and particle size distribution in RAFT Emulsion Polymerization of Styrene. Journal of Polymer Science Part A, 2015, 53, 1848-1853.	2.5	9
62	Wellâ€Đefined High Molecular Weight Polystyrene with High Rates and High Livingness Synthesized via Twoâ€ S tage RAFT Emulsion Polymerization. Macromolecular Rapid Communications, 2015, 36, 1277-1282.	2.0	24
63	Modelâ€Based Production of Polymer Chains Having Precisely Designed Endâ€ŧoâ€End Gradient Copolymer Composition and Chain Topology Distributions in Controlled Radical Polymerization, A Review. Macromolecular Reaction Engineering, 2015, 9, 409-417.	0.9	27
64	Suppressing the longâ€chain branching in the synthesis of poly(styreneâ€ <i>b</i> â€butyl) Tj ETQq0 0 0 rgBT /C properties. Journal of Polymer Science Part A, 2015, 53, 1464-1473.)verlock 10 2.5	0 Tf 50 387 Tr 10
65	Synthesis and Redispersibility of Poly(styrene- <i>block</i> - <i>n</i> butyl acrylate) Core–Shell Latexes by Emulsion Polymerization with RAFT Agent–Surfactant Design. Macromolecules, 2015, 48, 1313-1319.	2.2	29
66	One-pot interfacial polymerization to prepare PolyHIPEs with functional surface. Colloid and Polymer Science, 2015, 293, 1767-1779.	1.0	27
67	Comparison of RAFT <i>Ab Initio</i> Emulsion Polymerization of Methyl Methacrylate and Styrene Mediated by Oligo(methacrylic acidâ€bâ€methyl methacrylate) Trithiocarbonate Surfactant. Macromolecular Reaction Engineering, 2015, 9, 503-511.	0.9	12
68	Tailor-made compositional gradient copolymer by a many-shot RAFT emulsion polymerization method. Polymer Chemistry, 2014, 5, 3363-3371.	1.9	45
69	Ab Initio Emulsion and Miniemulsion Polymerization of Styrene Mediated by a Cyclohexenyl-Functionalized Amphiphilic RAFT Agent. Industrial & Engineering Chemistry Research, 2014, 53, 11259-11268.	1.8	9
70	RAFT Ab Initio Emulsion Polymerization of Styrene Using Poly(acrylic acid)-b-polystyrene Trithiocarbonate of Various Structures as Mediator and Surfactant. Macromolecular Reaction Engineering, 2014, 8, 696-705.	0.9	24
71	Ab Initio RAFT Emulsion Copolymerization of Styrene and Acrylonitrile. Industrial & Engineering Chemistry Research, 2014, 53, 7688-7695.	1.8	21
72	Supramolecular Lego Assembly Towards Threeâ€Dimensional Multiâ€Responsive Hydrogels. Advanced Materials, 2014, 26, 5665-5669.	11.1	220

#	Article	IF	CITATIONS
73	èšå•̂物产å"工程: é¢å'é«~性能é«~å^†å朖™çš"化å¦å·¥ç¨‹æ–°æ‹"展. Scientia Sinica Chimica, 2014,	44,01\$461-3	1468.
74	RAFT ab initio emulsion copolymerization of γ-methyl-α-methylene-γ-butyrolactone and styrene. Polymer, 2013, 54, 1779-1785.	1.8	32
75	A General Approach Towards Thermoplastic Multishapeâ€Memory Polymers via Sequence Structure Design. Advanced Materials, 2013, 25, 743-748.	11.1	168
76	Pushing the mechanical strength of PolyHIPEs up to the theoretical limit through living radical polymerization. Soft Matter, 2012, 8, 1824-1830.	1.2	71
77	Miniemulsion template polymerization to prepare a sub-micrometer porous polymeric monolith with an inter-connected structure and very high mechanical strength. Soft Matter, 2012, 8, 7547.	1.2	26
78	Using nanocapsules as building blocks to fabricate organic polymer nanofoam with ultra low thermal conductivity and high mechanical strength. Polymer, 2012, 53, 5699-5705.	1.8	23
79	Styrene–Butadiene–Styrene Triblock Copolymer Latex via Reversible Addition–Fragmentation Chain Transfer Miniemulsion Polymerization. Industrial & Engineering Chemistry Research, 2012, 51, 15530-15535.	1.8	51
80	Design and evaluation of a thermochromic roof system for energy saving based on poly(N-isopropylacrylamide) aqueous solution. Energy and Buildings, 2012, 48, 175-179.	3.1	22
81	Tuning Polymer Blends to Cocontinuous Morphology by Asymmetric Diblock Copolymers as the Surfactants. Macromolecules, 2011, 44, 2934-2943.	2.2	29
82	Toward Well-Controlled ab Initio RAFT Emulsion Polymerization of Styrene Mediated by 2-(((Dodecylsulfanyl)carbonothioyl)sulfanyl)propanoic Acid. Macromolecules, 2011, 44, 221-229.	2.2	62
83	Fabrication of non-collapsed hollow polymeric nanoparticles with shell thickness in the order of ten nanometres and anti-reflection coatings. Soft Matter, 2011, 7, 871-875.	1.2	38
84	<i>Ab initio</i> RAFT emulsion polymerization of butadiene using the amphiphilic poly(acrylic) Tj ETQq0 0 0 rgB ⁻ Part A, 2011, 49, 2980-2989.	[/Overloch 2.5	۱0 Tf 50 302 26
85	Facile Synthesis of Nanocapsules and Hollow Nanoparticles Consisting of Fluorinated Polymer Shells by Interfacial RAFT Miniemulsion Polymerization. Macromolecular Chemistry and Physics, 2011, 212, 737-743.	1.1	17
86	Synthesis of structured nanoparticles of styrene/butadiene block copolymers via RAFT seeded emulsion polymerization. Polymer, 2010, 51, 3879-3886.	1.8	58
87	Polystyrene- <i>block</i> -poly(<i>n</i> -butyl acrylate)- <i>block</i> -polystyrene Triblock Copolymer Thermoplastic Elastomer Synthesized via RAFT Emulsion Polymerization. Macromolecules, 2010, 43, 7472-7481.	2.2	119
88	pH Effects on the Synthesis of Nanocapsules via Interfacial Miniemulsion Polymerization Mediated by Amphiphilic RAFT Agent with the R Group of Poly(methyl acrylic acid-ran-styrene). Industrial & Engineering Chemistry Research, 2010, 49, 2206-2212.	1.8	24
89	Co ontinuous Polymeric Nanostructures via Simple Melt Mixing of PS/PMMA. Macromolecular Rapid Communications, 2009, 30, 133-137	2.0	16
90	Effect of monomer composition on apparent chain transfer coefficient in reversible addition fragmentation transfer (RAFT) copolymerization. Polymer, 2009, 50, 802-809.	1.8	13

#	Article	IF	CITATIONS
91	RAFT miniemulsion polymerization of methyl methacrylate. Polymer, 2009, 50, 4334-4342.	1.8	25
92	Phase Behavior of Ternary Homopolymer/Gradient Copolymer Blends. Macromolecules, 2009, 42, 2275-2285.	2.2	41
93	Ab Initio Batch Emulsion RAFT Polymerization of Styrene Mediated by Poly(acrylic acid- <i>b</i> -styrene) Trithiocarbonate. Macromolecules, 2009, 42, 6414-6421.	2.2	115
94	Modeling of Branching and Gelation in RAFT Copolymerization of Vinyl/Divinyl Systems. Macromolecules, 2009, 42, 85-94.	2.2	81
95	Effect of rate retardation in RAFT grafting polymerization from silicon wafer surface. Journal of Polymer Science Part A, 2008, 46, 970-978.	2.5	30
96	Semibatch RAFT polymerization for producing ST/BA copolymers with controlled gradient composition profiles. AICHE Journal, 2008, 54, 1073-1087.	1.8	67
97	Programmed Synthesis of Copolymer with Controlled Chain Composition Distribution via Semibatch RAFT Copolymerization. Macromolecules, 2007, 40, 849-859.	2.2	98
98	Control of gradient copolymer composition in ATRP using semibatch feeding policy. AICHE Journal, 2007, 53, 174-186.	1.8	89
99	A Facile Route to Synthesize Highly Uniform Nanocapsules: Use of Amphiphilic Poly(acrylic) Tj ETQq1 1 0.784314 Macromolecular Rapid Communications, 2007, 28, 868-874.	rgBT /Ov 2.0	verlock 10 T 71
100	Nanoencapsulation via interfacially confined reversible addition fragmentation transfer (RAFT) miniemulsion polymerization. Polymer, 2007, 48, 3262-3272.	1.8	72
101	Butyl acrylate RAFT polymerization in miniemulsion. Journal of Polymer Science Part A, 2007, 45, 2304-2315.	2.5	36
102	Kinetics of methyl methacrylate andn-butyl acrylate copolymerization mediated by 2-cyanoprop-2-yl dithiobenzoate as a RAFT agent. Journal of Polymer Science Part A, 2007, 45, 3098-3111.	2.5	14
103	Effect of Reversible Additionâ^'Fragmentation Transfer (RAFT) Reactions on (Mini)emulsion Polymerization Kinetics and Estimate of RAFT Equilibrium Constant. Macromolecules, 2006, 39, 1328-1337.	2.2	115
104	Reversible addition–fragmentation chain transfer polymerization of methyl methacrylate in emulsion. Journal of Polymer Science Part A, 2006, 44, 2837-2847.	2.5	55
105	The influence of surfactant coverage of the minidroplets on RAFT miniemulsion polymerization. Journal of Polymer Science Part A, 2006, 44, 2293-2306.	2.5	23
106	Reversible addition fragmentation transfer (RAFT) polymerization of styrene in a miniemulsion: A mechanistic investigation. Polymer, 2006, 47, 751-762.	1.8	49
107	The influence of monomer types on the colloidal stability in the miniemulsion copolymerization involving alkoxysilane monomer. Polymer, 2006, 47, 4959-4966.	1.8	27
108	A General Strategy for Nano-Encapsulation via Interfacially Confined Living/Controlled Radical Miniemulsion Polymerization. Macromolecular Rapid Communications, 2006, 27, 21-25.	2.0	97

#	Article	IF	CITATIONS
109	Design and Control of Copolymer Composition Distribution in Living Radical Polymerization Using Semi-Batch Feeding Policies: A Model Simulation. Macromolecular Theory and Simulations, 2006, 15, 356-368.	0.6	77
110	Study on kinetics of controlled/living radical polymerization of acrylonitrile by RAFT technique. Journal of Polymer Science Part A, 2005, 43, 1973-1977.	2.5	52
111	RAFT miniemulsion polymerization targeting to polymer of higher molecular weight. Journal of Polymer Science Part A, 2005, 43, 4972-4979.	2.5	40
112	Monte Carlo Simulation of Droplet Nucleation in RAFT Free Radical Miniemulsion Polymerization. Polymer-Plastics Technology and Engineering, 2005, 43, 1299-1321.	1.9	23
113	Nanoencapsulation of a hydrophobic compound by a miniemulsion polymerization process. Journal of Polymer Science Part A, 2004, 42, 2145-2154.	2.5	114
114	Reversible addition-fragmentation transfer (RAFT) copolymerization of methyl methacrylate and styrene in miniemulsion. Journal of Polymer Science Part A, 2004, 42, 6248-6258.	2.5	77
115	Water-soluble/dispersible cationic pressure-sensitive adhesives. II. Adhesives from emulsion polymerization. Journal of Applied Polymer Science, 2004, 91, 347-353.	1.3	4
116	Grafting mechanisms in hybrid miniemulsion polymerization. Journal of Applied Polymer Science, 2003, 87, 1825-1836.	1.3	63
117	Limiting Conversion Phenomenon in Hybrid Miniemulsion Polymerization. Polymer-Plastics Technology and Engineering, 2003, 11, 277-304.	0.7	36
118	Emulsion and miniemulsion polymerizations with an oil-soluble initiator in the presence and absence of an aqueous-phase radical scavenger. Journal of Polymer Science Part A, 2002, 40, 3200-3211.	2.5	61
119	Theoretical Aspects of Particle Swelling in Living Free Radical Miniemulsion Polymerization. Macromolecules, 2001, 34, 5501-5507.	2.2	144
120	Emulsion copolymerization of butyl acrylate with cationic monomer using interfacial redox initiator system. Journal of Polymer Science Part A, 2001, 39, 2696-2709.	2.5	31
121	EMULSION/MINIEMULSION POLYMERIZATION OF BUTYL ACRYLATE WITH THE CUMENE HYDROPEROXIDE/TETRAETHLENEPENTAMINE REDOX INITIATOR. Polymer-Plastics Technology and Engineering, 2001, 9, 183-197.	0.7	4
122	Synthesis and properties of magnets/polyethylene composites. Journal of Applied Polymer Science, 1999, 74, 3412-3416.	1.3	9
123	A model of the gel fraction of polymer in the vinyl chloride/divinyl monomers suspension copolymerization. Journal of Applied Polymer Science, 1997, 64, 1681-1690.	1.3	5
124	Modeling of effective crosslinking density of the gel in free-radical copolymerization of vinyl/divinyl monomers. Journal of Applied Polymer Science, 1997, 64, 1691-1699.	1.3	2
125	The combined statistical and kinetic modeling of gel/sol partition in free-radical copolymerization of vinyl/divinyl monomers. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 65-73.	2.4	5