Harri Lipsanen

List of Publications by Citations

Source: https://exaly.com/author-pdf/8371996/harri-lipsanen-publications-by-citations.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

358 papers

6,404 citations

40 h-index

64 g-index

406 ext. papers

7,349 ext. citations

*3.*7 avg, IF

5.67 L-index

#	Paper	IF	Citations
358	Nonlinear Optics with 2D Layered Materials. <i>Advanced Materials</i> , 2018 , 30, e1705963	24	309
357	Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation. <i>Scientific Reports</i> , 2015 , 5, 15899	4.9	225
356	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001	5.9	179
355	Luminescence from excited states in strain-induced InxGa1-xAs quantum dots. <i>Physical Review B</i> , 1995 , 51, 13868-13871	3.3	161
354	Crystal-structure-dependent photoluminescence from InP nanowires. <i>Nanotechnology</i> , 2006 , 17, 1580-	3 3.4	143
353	Ultra-strong nonlinear optical processes and trigonal warping in MoS layers. <i>Nature Communications</i> , 2017 , 8, 893	17.4	123
352	Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion. <i>Thin Solid Films</i> , 2014 , 552, 124	-133	119
351	Carrier relaxation dynamics in quantum dots: Scattering mechanisms and state-filling effects. <i>Physical Review B</i> , 1997 , 55, 4473-4476	3.3	107
350	Dispersion engineering of photonic crystal waveguides with ring-shaped holes. <i>Optics Express</i> , 2007 , 15, 8323-8	3.3	102
349	A single-pixel wireless contact lens display. <i>Journal of Micromechanics and Microengineering</i> , 2011 , 21, 125014	2	98
348	Rapid visualization of grain boundaries in monolayer MoS by multiphoton microscopy. <i>Nature Communications</i> , 2017 , 8, 15714	17.4	93
347	Zeeman Effect in Parabolic Quantum Dots. <i>Physical Review Letters</i> , 1996 , 77, 342-345	7.4	92
346	Properties of AlN grown by plasma enhanced atomic layer deposition. <i>Applied Surface Science</i> , 2011 , 257, 7827-7830	6.7	91
345	Catalyst-free growth of In(As)P nanowires on silicon. <i>Applied Physics Letters</i> , 2006 , 89, 063119	3.4	84
344	Strain-induced quantum dots by self-organized stressors. <i>Applied Physics Letters</i> , 1995 , 66, 2364-2366	3.4	82
343	Investigation of second- and third-harmonic generation in few-layer gallium selenide by multiphoton microscopy. <i>Scientific Reports</i> , 2015 , 5, 10334	4.9	76
342	Observation of defect complexes containing Ga vacancies in GaAsN. <i>Applied Physics Letters</i> , 2003 , 82, 40-42	3.4	76

341	Tunable Graphene-GaSe Dual Heterojunction Device. Advanced Materials, 2016, 28, 1845-52	24	76
340	Black phosphorus polycarbonate polymer composite for pulsed fibre lasers. <i>Applied Materials Today</i> , 2016 , 4, 17-23	6.6	74
339	Rapid large-area multiphoton microscopy for characterization of graphene. ACS Nano, 2013, 7, 8441-6	16.7	69
338	High quality GaAs nanowires grown on glass substrates. <i>Nano Letters</i> , 2012 , 12, 1912-8	11.5	66
337	Temperature dependence of carrier relaxation in strain-induced quantum dots. <i>Physical Review B</i> , 1998 , 58, R15993-R15996	3.3	63
336	Selective growth of InGaAs on nanoscale InP islands. <i>Applied Physics Letters</i> , 1994 , 65, 1662-1664	3.4	61
335	A MoSe2/WSe2 Heterojunction-Based Photodetector at Telecommunication Wavelengths. <i>Advanced Functional Materials</i> , 2018 , 28, 1804388	15.6	60
334	Self-organized InP islands on (100) GaAs by metalorganic vapor phase epitaxy. <i>Applied Physics Letters</i> , 1995 , 67, 3768-3770	3.4	59
333	Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides. <i>Nature Communications</i> , 2019 , 10, 432	17.4	57
332	Review Article: Recommended reading list of early publications on atomic layer deposition Dutcome of the Virtual Project on the History of ALD Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 010801	2.9	55
331	Self-organized InAs islands on (100) InP by metalorganic vapor-phase epitaxy. <i>Surface Science</i> , 1997 , 376, 60-68	1.8	55
330	Second-harmonic generation imaging of semiconductor nanowires with focused vector beams. <i>Nano Letters</i> , 2015 , 15, 1564-9	11.5	53
329	Optical harmonic generation in monolayer group-VI transition metal dichalcogenides. <i>Physical Review B</i> , 2018 , 98,	3.3	53
328	Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires. <i>Nature Communications</i> , 2016 , 7, 13400	17.4	51
327	Rapid and Large-Area Characterization of Exfoliated Black Phosphorus Using Third-Harmonic Generation Microscopy. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 1343-1350	6.4	50
326	Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors. <i>Thin Solid Films</i> , 2014 , 558, 93-98	2.2	50
325	High photoresponsivity and broadband photodetection with a band-engineered WSe/SnSe heterostructure. <i>Nanoscale</i> , 2019 , 11, 3240-3247	7.7	49
324	Graphene-enhanced Raman imaging of TiO2 nanoparticles. <i>Nanotechnology</i> , 2012 , 23, 465703	3.4	49

323	High nitrogen composition GaAsN by atmospheric pressure metalorganic vapor-phase epitaxy. <i>Journal of Crystal Growth</i> , 2000 , 221, 456-460	1.6	48
322	Noncovalent attachment of pyro-pheophorbide a to a carbon nanotube. <i>Chemical Communications</i> , 2007 , 519-21	5.8	45
321	Photovoltaic properties of GaAsP core-shell nanowires on Si(001) substrate. <i>Nanotechnology</i> , 2012 , 23, 265402	3.4	42
320	Doping and carrier transport in Ga1BxIn3xNxAs1⊠ alloys. <i>Physical Review B</i> , 2001 , 64,	3.3	41
319	Second and third harmonic generation in few-layer gallium telluride characterized by multiphoton microscopy. <i>Applied Physics Letters</i> , 2016 , 108, 073103	3.4	41
318	Solubility of Boron, Carbon, and Nitrogen in Transition Metals: Getting Insight into Trends from First-Principles Calculations. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 3263-3268	6.4	40
317	Enhanced luminescence from catalyst-free grown InP nanowires. Applied Physics Letters, 2007, 90, 03310	0314	39
316	Synthesis of ZnO tetrapods for flexible and transparent UV sensors. <i>Nanotechnology</i> , 2012 , 23, 095502	3.4	36
315	GaAs surface passivation by plasma-enhanced atomic-layer-deposited aluminum nitride. <i>Applied Surface Science</i> , 2010 , 256, 7434-7437	6.7	36
314	Control of the morphology of InGaN/GaN quantum wells grown by metalorganic chemical vapor deposition. <i>Journal of Crystal Growth</i> , 2007 , 300, 324-329	1.6	36
313	Effect of substrate orientation on the catalyst-free growth of InP nanowires. <i>Nanotechnology</i> , 2007 , 18, 155301	3.4	35
312	Transformation of self-assembled InAs/InP quantum dots into quantum rings without capping. <i>Nano Letters</i> , 2005 , 5, 1541-3	11.5	35
311	Mechanistic investigation of ZnO nanowire growth. Applied Physics Letters, 2009, 95, 183114	3.4	34
310	Synchrotron radiation x-ray topography and defect selective etching analysis of threading dislocations in GaN. <i>Journal of Applied Physics</i> , 2014 , 116, 083504	2.5	33
309	Self-Assembled Porphyrins on Modified Zinc Oxide Nanorods: Development of Model Systems for Inorganic Drganic Semiconductor Interface Studies. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 2336-234	3 ^{.8}	33
308	Magneto-optical properties of strain-induced InxGa1⊠As parabolic quantum dots. <i>Physical Review B</i> , 1998 , 57, 9763-9769	3.3	33
307	Nanowire network-based multifunctional all-optical logic gates. <i>Science Advances</i> , 2018 , 4, eaar7954	14.3	30
306	Electrical measurement of internal quantum efficiency and extraction efficiency of III-N light-emitting diodes. <i>Applied Physics Letters</i> , 2012 , 101, 021113	3.4	30

(2002-1996)

305	Enhanced optical properties of in situ passivated near-surface AlxGa1\(\mathbb{A}\)As/GaAs quantum wells. <i>Applied Physics Letters</i> , 1996 , 68, 2216-2218	3.4	30	
304	Graphene actively Q-switched lasers. 2D Materials, 2017 , 4, 025095	5.9	29	
303	Crystal quality of two-dimensional gallium telluride and gallium selenide using Raman fingerprint. <i>AIP Advances</i> , 2017 , 7, 015014	1.5	29	
302	Photo-thermal chemical vapor deposition of graphene on copper. <i>Carbon</i> , 2013 , 62, 43-50	10.4	29	
301	Pauli-blocking imaging of single strain-induced semiconductor quantum dots. <i>Applied Physics Letters</i> , 1999 , 74, 3200-3202	3.4	29	
300	Aluminum oxide/titanium dioxide nanolaminates grown by atomic layer deposition: Growth and mechanical properties. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2017 , 35, 01B105	2.9	28	
299	Effects of few-particle interaction on the atomiclike levels of a single strain-induced quantum dot. <i>Physical Review B</i> , 2000 , 62, 1592-1595	3.3	28	
298	Influence of plasma chemistry on impurity incorporation in AlN prepared by plasma enhanced atomic layer deposition. <i>Journal Physics D: Applied Physics</i> , 2013 , 46, 505502	3	27	
297	Capillary-driven self-assembly of microchips on oleophilic/oleophobic patterned surface using adhesive droplet in ambient air. <i>Applied Physics Letters</i> , 2011 , 99, 034104	3.4	27	
296	Growth of GaInAsSb using tertiarybutylarsine as arsenic source. <i>Journal of Crystal Growth</i> , 1994 , 145, 492-497	1.6	27	
295	Direct transfer of wafer-scale graphene films. 2D Materials, 2017, 4, 035004	5.9	26	
294	Interference effects in photoreflectance of epitaxial layers grown on semi-insulating substrates. <i>Applied Physics Letters</i> , 1993 , 63, 2863-2865	3.4	26	
293	Low Temperature Growth GaAs on Ge. Japanese Journal of Applied Physics, 2005, 44, 7777-7784	1.4	25	
292	X-ray reflectivity characterization of atomic layer deposition Al2O3/TiO2 nanolaminates with ultrathin bilayers. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2014 , 32, 01A111	2.9	24	
291	Properties, applications and fabrication of photonic crystals with ring-shaped holes in silicon-on-insulator. <i>Photonics and Nanostructures - Fundamentals and Applications</i> , 2008 , 6, 42-46	2.6	24	
290	Single-photon sources with quantum dots in IIIIV nanowires. <i>Nanophotonics</i> , 2019 , 8, 747-769	6.3	23	
289	Aluminum-Induced photoluminescence red shifts in core-shell GaAs/Al(x)Ga(1-x)As nanowires. <i>Nano Letters</i> , 2013 , 13, 3581-8	11.5	23	
288	GaInNAs quantum well structures for 1.55 th emission on GaAs by atmospheric pressure metalorganic vapor phase epitaxy. <i>Journal of Crystal Growth</i> , 2002 , 234, 631-636	1.6	23	

287	Room-temperature observation of impurity states in bulk GaAs by photoreflectance. <i>Journal of Applied Physics</i> , 1989 , 65, 2556-2557	2.5	23
286	Corrosion protection of steel with multilayer coatings: Improving the sealing properties of physical vapor deposition CrN coatings with Al 2 O 3 /TiO 2 atomic layer deposition nanolaminates. <i>Thin Solid Films</i> , 2017 , 627, 59-68	2.2	22
285	Young's Modulus of Wurtzite and Zinc Blende InP Nanowires. <i>Nano Letters</i> , 2017 , 17, 3441-3446	11.5	22
284	A physics-based model of gate-tunable metal@raphene contact resistance benchmarked against experimental data. <i>2D Materials</i> , 2015 , 2, 025006	5.9	22
283	Strong surface passivation of GaAs nanowires with ultrathin InP and GaP capping layers. <i>Applied Physics Letters</i> , 2014 , 105, 033114	3.4	22
282	Impurity breakdown and terahertz luminescence in n-GaN epilayers under external electric field. Journal of Applied Physics, 2009, 106, 123523	2.5	21
281	Slow light propagation in photonic crystal waveguides with ring-shaped holes. <i>Journal of Optics</i> , 2007 , 9, S415-S418		21
280	Effect of growth conditions on electrical properties of Mg-doped p-GaN. <i>Journal of Crystal Growth</i> , 2007 , 298, 811-814	1.6	21
279	Passivation of GaAs surface by ultrathin epitaxial GaN layer. <i>Journal of Crystal Growth</i> , 2004 , 272, 621-62	2 6 .6	21
a=0			
278	. IEEE Photonics Technology Letters, 1992 , 4, 673-675	2.2	21
277	Large-area analysis of dislocations in ammonothermal GaN by synchrotron radiation X-ray topography. <i>Applied Physics Express</i> , 2014 , 7, 091003	2.2	20
	Large-area analysis of dislocations in ammonothermal GaN by synchrotron radiation X-ray topography. <i>Applied Physics Express</i> , 2014 , 7, 091003 Nonlinear microscopy using cylindrical vector beams: Applications to three-dimensional imaging of		
277	Large-area analysis of dislocations in ammonothermal GaN by synchrotron radiation X-ray topography. <i>Applied Physics Express</i> , 2014 , 7, 091003 Nonlinear microscopy using cylindrical vector beams: Applications to three-dimensional imaging of	2.4	20
² 77	Large-area analysis of dislocations in ammonothermal GaN by synchrotron radiation X-ray topography. <i>Applied Physics Express</i> , 2014 , 7, 091003 Nonlinear microscopy using cylindrical vector beams: Applications to three-dimensional imaging of nanostructures. <i>Optics Express</i> , 2017 , 25, 12463-12468 Impact of ALD grown passivation layers on silicon nitride based integrated optic devices for	2.4	20
² 77 ² 76 ² 75	Large-area analysis of dislocations in ammonothermal GaN by synchrotron radiation X-ray topography. <i>Applied Physics Express</i> , 2014 , 7, 091003 Nonlinear microscopy using cylindrical vector beams: Applications to three-dimensional imaging of nanostructures. <i>Optics Express</i> , 2017 , 25, 12463-12468 Impact of ALD grown passivation layers on silicon nitride based integrated optic devices for very-near-infrared wavelengths. <i>Optics Express</i> , 2014 , 22, 5684-92 Surface-tension driven self-assembly of microchips on hydrophobic receptor sites with water using forced wetting. <i>Applied Physics Letters</i> , 2012 , 101, 114105	2.4 3.3 3.3	20 20 20
² 77 ² 76 ² 75 ² 74	Large-area analysis of dislocations in ammonothermal GaN by synchrotron radiation X-ray topography. <i>Applied Physics Express</i> , 2014 , 7, 091003 Nonlinear microscopy using cylindrical vector beams: Applications to three-dimensional imaging of nanostructures. <i>Optics Express</i> , 2017 , 25, 12463-12468 Impact of ALD grown passivation layers on silicon nitride based integrated optic devices for very-near-infrared wavelengths. <i>Optics Express</i> , 2014 , 22, 5684-92 Surface-tension driven self-assembly of microchips on hydrophobic receptor sites with water using forced wetting. <i>Applied Physics Letters</i> , 2012 , 101, 114105 The effect of InGaN/GaN MQW hydrogen treatment and threading dislocation optimization on GaN LED efficiency. <i>Journal of Crystal Growth</i> , 2007 , 298, 740-743	2.4 3.3 3.3	20 20 20 20
277276275274273	Large-area analysis of dislocations in ammonothermal GaN by synchrotron radiation X-ray topography. <i>Applied Physics Express</i> , 2014 , 7, 091003 Nonlinear microscopy using cylindrical vector beams: Applications to three-dimensional imaging of nanostructures. <i>Optics Express</i> , 2017 , 25, 12463-12468 Impact of ALD grown passivation layers on silicon nitride based integrated optic devices for very-near-infrared wavelengths. <i>Optics Express</i> , 2014 , 22, 5684-92 Surface-tension driven self-assembly of microchips on hydrophobic receptor sites with water using forced wetting. <i>Applied Physics Letters</i> , 2012 , 101, 114105 The effect of InGaN/GaN MQW hydrogen treatment and threading dislocation optimization on GaN LED efficiency. <i>Journal of Crystal Growth</i> , 2007 , 298, 740-743 Morphology optimization of MOCVD-grown GaN nucleation layers by the multistep technique.	2.4 3.3 3.4 1.6	20 20 20 20 20

(1996-2008)

269	Enhanced electroluminescence in 405nm InGaN/GaN LEDs by optimized electron blocking layer. Journal of Crystal Growth, 2008 , 310, 5154-5157	1.6	19	
268	Experimental investigation towards a periodically pumped single-photon source. <i>Physical Review B</i> , 2006 , 74,	3.3	19	
267	Atomic Layer Engineering of Er-Ion Distribution in Highly Doped Er:Al2O3 for Photoluminescence Enhancement. <i>ACS Photonics</i> , 2016 , 3, 2040-2048	6.3	19	
266	High-quality crystallinity controlled ALD TiO2 for waveguiding applications. <i>Optics Letters</i> , 2013 , 38, 398	89-3	18	
265	Atomic layer deposition of ytterbium oxide using -diketonate and ozone precursors. <i>Applied Surface Science</i> , 2009 , 256, 847-851	6.7	18	
264	High-k GaAs metal insulator semiconductor capacitors passivated by ex-situ plasma-enhanced atomic layer deposited AlN for Fermi-level unpinning. <i>Applied Physics Letters</i> , 2012 , 100, 071606	3.4	18	
263	Growth of high-quality GaSb by metalorganic vapor phase epitaxy. <i>Journal of Electronic Materials</i> , 1995 , 24, 1691-1696	1.9	18	
262	Superhydrophobic Antireflection Coating on Glass Using Grass-like Alumina and Fluoropolymer. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 12, 49957-49962	9.5	18	
261	Protective capping and surface passivation of III-V nanowires by atomic layer deposition. <i>AIP Advances</i> , 2016 , 6, 015016	1.5	18	
260	Effect of growth temperature on the epitaxial growth of ZnO on GaN by ALD. <i>Journal of Crystal Growth</i> , 2014 , 398, 18-22	1.6	17	
259	Demonstration of longitudinally polarized optical needles. <i>Optics Express</i> , 2018 , 26, 27572-27584	3.3	17	
258	Passivation of GaAs surface by atomic-layer-deposited titanium nitride. <i>Applied Surface Science</i> , 2008 , 254, 5385-5389	6.7	16	
257	Genetic algorithm using independent component analysis in x-ray reflectivity curve fitting of periodic layer structures. <i>Journal Physics D: Applied Physics</i> , 2007 , 40, 6000-6004	3	16	
256	Nonlinear fitnessEpaceEtructure adaptation and principal component analysis in genetic algorithms: an application to x-ray reflectivity analysis. <i>Journal Physics D: Applied Physics</i> , 2007 , 40, 215-2	<u>2</u> 38	16	
255	Multistep method for threading dislocation density reduction in MOCVD grown GaN epilayers. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2006 , 203, R76-R78	1.6	16	
254	Electron-Hole Correlation in Quantum Dots under a High Magnetic Field (up to 45 T). <i>Physical Review Letters</i> , 1999 , 83, 4832-4835	7.4	16	
253	Metalorganic vapor phase epitaxial growth of AlGaSb and AlGaAsSb using all-organometallic sources. <i>Journal of Crystal Growth</i> , 1996 , 169, 417-423	1.6	16	
252	Red luminescence from strain-induced GaInP quantum dots. <i>Applied Physics Letters</i> , 1996 , 69, 3393-3395	3.4	16	

251	Thermal conductivity of amorphous Al2O3/TiO2 nanolaminates deposited by atomic layer deposition. <i>Nanotechnology</i> , 2016 , 27, 445704	3.4	16
250	Atomic layer deposition of AlN from AlCl3 using NH3 and Ar/NH3 plasma. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2018 , 36, 021508	2.9	15
249	Surface-Tension-Driven Self-Alignment of Microchips on Black-Silicon-Based Hybrid Template in Ambient Air. <i>Journal of Microelectromechanical Systems</i> , 2013 , 22, 739-746	2.5	15
248	Generation of terahertz radiation in ordered arrays of GaAs nanowires. <i>Applied Physics Letters</i> , 2015 , 106, 252104	3.4	15
247	Metal Contacts on InN: Proposal for Schottky Contact. <i>Japanese Journal of Applied Physics</i> , 2006 , 45, 36-	-3494	15
246	Self-assembled GaIn(N)As quantum dots: Enhanced luminescence at 1.3 fh. <i>Applied Physics Letters</i> , 2001 , 79, 3932-3934	3.4	15
245	Mechanical nanomanipulation of single strain-induced semiconductor quantum dots. <i>Applied Physics Letters</i> , 1999 , 75, 358-360	3.4	15
244	Direct Growth of Light-Emitting III-V Nanowires on Flexible Plastic Substrates. ACS Nano, 2020, 14, 7484	4-76 19 1	14
243	Low-height sharp edged patterns for capillary self-alignment assisted hybrid microassembly. Journal of Micro-Bio Robotics, 2014 , 9, 1-10	1.4	14
242	Enhanced Tunneling in a Hybrid of Single-Walled Carbon Nanotubes and Graphene. <i>ACS Nano</i> , 2019 , 13, 11522-11529	16.7	13
241	Photoresponse of Graphene-Gated Graphene-GaSe Heterojunction Devices. <i>ACS Applied Nano Materials</i> , 2018 , 1, 3895-3902	5.6	13
240	Improved SERS Intensity from Silver-Coated Black Silicon by Tuning Surface Plasmons. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1300008	4.6	13
239	Analysis of threading dislocations in void shape controlled GaN re-grown on hexagonally patterned mask-less GaN. <i>Journal of Crystal Growth</i> , 2012 , 344, 59-64	1.6	13
238	Ultrafast Relaxation Dynamics in Strain-Induced Quantum Dots. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 251-254	1.3	13
237	Synchrotron X-ray topography study of defects in indium antimonide P-I-N structures grown by metal organic vapour phase epitaxy. <i>Journal of Materials Science: Materials in Electronics</i> , 2005 , 16, 449-	4 3 3	13
236	Fabrication and photoluminescence of quantum dots induced by strain of self-organized stressors. <i>Solid-State Electronics</i> , 1996 , 40, 601-604	1.7	13
235	Erbium-doped hybrid waveguide amplifiers with net optical gain on a fully industrial 300 mm silicon nitride photonic platform. <i>Optics Express</i> , 2020 , 28, 27919-27926	3.3	13
234	Review of fabrication methods of large-area transparent graphene electrodes for industry. <i>Frontiers of Optoelectronics</i> , 2020 , 13, 91-113	2.8	13

(2012-2015)

233	All-Graphene Three-Terminal-Junction Field-Effect Devices as Rectifiers and Inverters. <i>ACS Nano</i> , 2015 , 9, 5666-74	16.7	12
232	Spontaneous and stimulated emission in InAsSb-based LED heterostructures. <i>Infrared Physics and Technology</i> , 2017 , 85, 246-250	2.7	12
231	Nonlinear behavior of three-terminal graphene junctions at room temperature. <i>Nanotechnology</i> , 2012 , 23, 115201	3.4	12
230	Ultra-Thin Silicon Nitride X-Ray Windows. <i>IEEE Transactions on Nuclear Science</i> , 2013 , 60, 1311-1314	1.7	12
229	Ferromagnetic (Ga,Mn)As nanowires grown by Mn-assisted molecular beam epitaxy. <i>Journal of Applied Physics</i> , 2013 , 113, 144303	2.5	12
228	InGaN-based 405 nm near-ultraviolet light emitting diodes on pillar patterned sapphire substrates. <i>CrystEngComm</i> , 2010 , 12, 3152	3.3	12
227	Void shape control in GaN re-grown on hexagonally patterned mask-less GaN. <i>Journal of Crystal Growth</i> , 2011 , 315, 188-191	1.6	12
226	MOVPE growth and characterization of InAlGaN films and InGaN/InAlGaN MQW structures. <i>Journal of Crystal Growth</i> , 2008 , 310, 1777-1780	1.6	12
225	Comparison of epitaxial thin layer GaN and InP passivations on InGaAstaAs near-surface quantum wells. <i>Applied Physics Letters</i> , 2006 , 88, 221112	3.4	12
224	Photoreflectance study of photovoltage effects in GaAs diode structures. <i>Applied Physics Letters</i> , 1992 , 60, 2110-2112	3.4	12
223	Slot waveguide ring resonators coated by an atomic layer deposited organic/inorganic nanolaminate. <i>Optics Express</i> , 2015 , 23, 26940-51	3.3	11
222	Nanotribological, nanomechanical and interfacial characterization of atomic layer deposited TiO2 on a silicon substrate. <i>Wear</i> , 2015 , 342-343, 270-278	3.5	11
221	Effect of Surface Wear on Corrosion Protection of Steel by CrN Coatings Sealed with Atomic Layer Deposition. <i>ACS Omega</i> , 2018 , 3, 1791-1800	3.9	11
220	Identifying threading dislocation types in ammonothermally grown bulk EGaN by confocal Raman 3-D imaging of volumetric stress distribution. <i>Journal of Crystal Growth</i> , 2018 , 499, 47-54	1.6	11
219	Photo-induced electron transfer at nanostructured semiconductor inc porphyrin interface. <i>Chemical Physics Letters</i> , 2014 , 592, 47-51	2.5	11
218	Defect structure of a free standing GaN wafer grown by the ammonothermal method. <i>Journal of Crystal Growth</i> , 2014 , 406, 72-77	1.6	11
217	Performance and Properties of Ultra-Thin Silicon Nitride X-ray Windows. <i>IEEE Transactions on Nuclear Science</i> , 2014 , 61, 695-699	1.7	11
216	Formation of (Ga,Mn)As nanowires and study of their magnetic properties. <i>Semiconductors</i> , 2012 , 46, 179-183	0.7	11

215	Broadband laser polarization control with aligned carbon nanotubes. <i>Nanoscale</i> , 2015 , 7, 11199-205	7.7	11
214	Stress distribution of GaN layer grown on micro-pillar patterned GaN templates. <i>Applied Physics Letters</i> , 2013 , 103, 012102	3.4	11
213	Growth temperature dependence of the electrical and structural properties of epitaxial graphene on SiC(0001). <i>Physica Status Solidi (B): Basic Research</i> , 2011 , 248, 1908-1914	1.3	11
212	Plasma etch characteristics of aluminum nitride mask layers grown by low-temperature plasma enhanced atomic layer deposition in SF6 based plasmas. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2012 , 30, 011504	2.9	11
211	Influence of substrate temperature on the shape of GaAs nanowires grown by Au-assisted MOVPE. Journal of Crystal Growth, 2010 , 312, 1676-1682	1.6	11
210	Aluminum Nitride Transition Layer for Power Electronics Applications Grown by Plasma-Enhanced Atomic Layer Deposition. <i>Materials</i> , 2019 , 12,	3.5	10
209	Active synchronization and modulation of fiber lasers with a graphene electro-optic modulator. <i>Optics Letters</i> , 2018 , 43, 3497-3500	3	10
208	InAs-Nanowire-Based Broadband Ultrafast Optical Switch. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 4429-4436	6.4	10
207	Scaling of graphene field-effect transistors supported on hexagonal boron nitride: radio-frequency stability as a limiting factor. <i>Nanotechnology</i> , 2017 , 28, 485203	3.4	10
206	Wafer-scale self-organized InP nanopillars with controlled orientation for photovoltaic devices. <i>Nanotechnology</i> , 2015 , 26, 415304	3.4	10
205	Synchrotron topography and X-ray diffraction study of GaInP layers grown on GaAs/Ge. <i>Journal of Crystal Growth</i> , 2009 , 311, 4619-4627	1.6	10
204	Fitness function and nonunique solutions in x-ray reflectivity curve fitting: crosserror between surface roughness and mass density. <i>Journal Physics D: Applied Physics</i> , 2007 , 40, 4259-4263	3	10
203	Structural and optical properties of GaInNAs/GaAs quantum structures. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, S3009-S3026	1.8	10
202	Misfit dislocations in GaAsN/GaAs interface. <i>Journal of Materials Science: Materials in Electronics</i> , 2003 , 14, 267-270	2.1	10
201	Influence of surface passivation on electric properties of individual GaAs nanowires studied by currentwoltage AFM measurements. <i>Lithuanian Journal of Physics</i> , 2016 , 56,	1.1	10
200	Nanowire encapsulation with polymer for electrical isolation and enhanced optical properties. <i>Nano Research</i> , 2017 , 10, 2657-2666	10	9
199	III-V nanowires on black silicon and low-temperature growth of self-catalyzed rectangular InAs NWs. <i>Scientific Reports</i> , 2018 , 8, 6410	4.9	9
198	Pyrolytic carbon coated black silicon. <i>Scientific Reports</i> , 2016 , 6, 25922	4.9	9

197	A technique for large-area position-controlled growth of GaAs nanowire arrays. <i>Nanotechnology</i> , 2016 , 27, 135601	3.4	9
196	Substitutionality of nitrogen atoms and formation of nitrogen complexes and point defects in GaPN alloys. <i>Journal Physics D: Applied Physics</i> , 2014 , 47, 075106	3	9
195	Growth and characterization of GaP layers on silicon substrates by metal-organic vapour phase epitaxy. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2012 , 9, 1607-1609		9
194	Patterning of sapphire/GaN substrates. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2011 , 8, 1509-1512		9
193	Reduced photoluminescence from InGaN/GaN multiple quantum well structures following 40Mev iodine ion irradiation. <i>Physica B: Condensed Matter</i> , 2009 , 404, 4925-4928	2.8	9
192	Inhomogeneous Barrier Height Analysis of (Ni/Au)IhAlGaN/GaN Schottky Barrier Diode. <i>Japanese Journal of Applied Physics</i> , 2011 , 50, 030201	1.4	9
191	Comparison of ammonia plasma and AlN passivation by plasma-enhanced atomic layer deposition. <i>Journal of Applied Physics</i> , 2012 , 111, 063511	2.5	9
190	Structural study of GaP layers on misoriented silicon (001) substrates by transverse scan analysis. <i>Journal of Applied Physics</i> , 2012 , 111, 043518	2.5	9
189	Carrier Relaxation in (GaIn)As Quantum Dots. <i>Physica Status Solidi A</i> , 1997 , 164, 421-425		9
188	Catalyst-free fabrication of InP and InP(N) nanowires by metalorganic vapor phase epitaxy. <i>Journal of Crystal Growth</i> , 2007 , 298, 640-643	1.6	9
187	Processing and characterization of epitaxial GaAs radiation detectors. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2015 , 796, 51-55	1.2	8
186	Fabrication of dual-type nanowire arrays on a single substrate. <i>Nano Letters</i> , 2015 , 15, 1679-83	11.5	8
185	Enhancement of near-UV GaN LED light extraction efficiency by GaN/sapphire template patterning. <i>Semiconductor Science and Technology</i> , 2012 , 27, 082002	1.8	8
184	GaAs nanowires grown on Al-doped ZnO buffer layer. <i>Journal of Applied Physics</i> , 2013 , 114, 084309	2.5	8
183	Self-assembled InAs island formation on GaAs (1 1 0) by metalorganic vapor phase epitaxy. <i>Applied Surface Science</i> , 2008 , 254, 2072-2076	6.7	8
182	GaAs Medipix2 hybrid pixel detector. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2008 , 591, 174-177	1.2	8
181	InAs pixel matrix detectors fabricated by diffusion of Zn in a metal-organic vapour-phase epitaxy reactor. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2006 , 563, 24-26	1.2	8
180	Tailoring of Energy Levels in Strain-Induced Quantum Dots. <i>Japanese Journal of Applied Physics</i> , 1999 , 38, 1081-1084	1.4	8

179	Trends in Carbon, Oxygen, and Nitrogen Core in the X-ray Absorption Spectroscopy of Carbon Nanomaterials: A Guide for the Perplexed. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 973-988	3.8	8
178	High performance complementary WS devices with hybrid Gr/Ni contacts. <i>Nanoscale</i> , 2020 , 12, 21280-2	1 29 0	8
177	Influence of plasma parameters on the properties of ultrathin Al2O3 films prepared by plasma enhanced atomic layer deposition below 100 °C for moisture barrier applications. <i>Japanese Journal of Applied Physics</i> , 2018 , 57, 125502	1.4	8
176	Single-step chemical vapour deposition of anti-pyramid MoS/WS vertical heterostructures. <i>Nanoscale</i> , 2021 , 13, 4537-4542	7.7	8
175	New Approach for Thickness Determination of Solution-Deposited Graphene Thin Films. <i>ACS Omega</i> , 2017 , 2, 2630-2638	3.9	7
174	IV curve hysteresis induced by gate-free charging of GaAs nanowires' surface oxide. <i>Applied Physics Letters</i> , 2017 , 111, 132104	3.4	7
173	Tribological properties of thin films made by atomic layer deposition sliding against silicon. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2018 , 36, 01A122	2.9	7
172	Comparison of mechanical properties and composition of magnetron sputter and plasma enhanced atomic layer deposition aluminum nitride films. <i>Journal of Vacuum Science and Technology A:</i> Vacuum, Surfaces and Films, 2018, 36, 051508	2.9	7
171	Detection of high-resolution Raman spectra in short oligonucleotides. <i>JETP Letters</i> , 2014 , 99, 373-377	1.2	7
170	Strain-compensated GaPN/GaP heterostructure on (0 0 1) silicon substrates for intermediate band solar cells. <i>Journal Physics D: Applied Physics</i> , 2013 , 46, 165103	3	7
169	Improvements and problems of BridgmanBtockbarger method for fabrication of TlBr single crystal detectors. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2009 , 607, 126-128	1.2	7
168	An investigation of structural properties of GaN films grown on patterned sapphire substrates by MOVPE. <i>Physica B: Condensed Matter</i> , 2009 , 404, 4911-4915	2.8	7
167	Novel method for error limit determination in x-ray reflectivity analysis. <i>Journal Physics D: Applied Physics</i> , 2008 , 41, 115302	3	7
166	InGaAs/InP Quantum Dots Induced by Self-Organized InAs Stressor-Islands. <i>Japanese Journal of Applied Physics</i> , 2005 , 44, L518-L520	1.4	7
165	Wavelength extension of GalnAs/Galn(N)As quantum dot structures grown on GaAs. <i>Journal of Crystal Growth</i> , 2003 , 248, 339-342	1.6	7
164	Carrier capture processes in strain-induced InxGa1NAs/GaAs quantum dot structures. <i>Physical Review B</i> , 2000 , 62, 13588-13594	3.3	7
163	Recombination processes in strain-induced InGaAs quantum dots. <i>Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics</i> , 1995 , 17, 169	9-1703	3 7
162	X-ray diffraction analysis of superlattices grown on misoriented substrates. <i>Journal of Crystal Growth</i> , 1991 , 114, 569-572	1.6	7

161	Thermal conductivity suppression in GaAs-AlAs core-shell nanowire arrays. <i>Nanoscale</i> , 2019 , 11, 20507-2	2 95/ 13	7
160	Mechanical and optical properties of as-grown and thermally annealed titanium dioxide from titanium tetrachloride and water by atomic layer deposition. <i>Thin Solid Films</i> , 2021 , 732, 138758	2.2	7
159	Geometry Tailoring of Emission from Semiconductor Nanowires and Nanocones. <i>Photonics</i> , 2020 , 7, 23	2.2	6
158	Transfer and patterning of chemical vapor deposited graphene by a multifunctional polymer film. <i>Applied Physics Letters</i> , 2018 , 112, 073107	3.4	6
157	Measurement of Nanowire Optical Modes Using Cross-Polarization Microscopy. <i>Scientific Reports</i> , 2017 , 7, 17790	4.9	6
156	Synchrotron radiation X-ray topography and X-ray diffraction of homoepitaxial GaN grown on ammonothermal GaN. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2012 , 9, 1630-1632		6
155	Highly tunable local gate controlled complementary graphene device performing as inverter and voltage controlled resistor. <i>Nanotechnology</i> , 2013 , 24, 395202	3.4	6
154	Characterization of TlBr for X-ray and Fray detector applications. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 2009 , 607, 129-131	1.2	6
153	Maskless selective growth of InGaAs/InP quantum wires on (100) GaAs. <i>Applied Physics Letters</i> , 1997 , 70, 2828-2830	3.4	6
152	Strain-induced quantum dot superlattice. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 1998 , 2, 19-22	3	6
151	Characterization of photonic crystal waveguides using FabryPerot resonances. <i>Journal of Optics</i> , 2006 , 8, S502-S506		6
150	Accuracy in x-ray reflectivity analysis. <i>Journal Physics D: Applied Physics</i> , 2007 , 40, 7497-7501	3	6
149	Nitrogen content of GaAsN quantum wells by in situ monitoring during MOVPE growth. <i>Journal of Crystal Growth</i> , 2006 , 290, 345-349	1.6	6
148	Modified self-assembly of InAs islands acting as stressors for strain-induced InGaAs(P)/InP quantum dots. <i>Nanotechnology</i> , 2005 , 16, 1630-1635	3.4	6
147	Longitudinal Stark Effect in Parabolic Quantum Dots. Japanese Journal of Applied Physics, 2001, 40, 200	2 ₁ 2ρ05	6
146	Comparison of absorption simulation in semiconductor nanowire and nanocone arrays with the Fourier modal method, the finite element method, and the finite-difference time-domain method. <i>Nano Express</i> , 2020 , 1, 030034	2	6
145	Synthesis and properties of ultra-long InP nanowires on glass. <i>Nanotechnology</i> , 2016 , 27, 505606	3.4	5
144	Electroluminescence of InAs/InAs(Sb)/InAsSbP LED heterostructures in the temperature range 4.2B00 K. <i>Semiconductors</i> , 2017 , 51, 239-244	0.7	5

143	Nanolaminate structures fabricated by ALD for reducing propagation losses and enhancing the third-order optical nonlinearities 2014 ,		5
142	Cascaded exciton emission of an individual strain-induced quantum dot. <i>Applied Physics Letters</i> , 2009 , 95, 083122	3.4	5
141	Synchrotron X-ray topographic study of strain in silicon wafers with integrated circuits. <i>Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics</i> , 1997 , 19, 181-184		5
140	Hydride vapour phase epitaxy for nanostructures. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1998 , 51, 238-241	3.1	5
139	GaAs surface passivation by ultra-thin epitaxial GaP layer and surface AsP exchange. <i>Applied Surface Science</i> , 2007 , 253, 6232-6235	6.7	5
138	Growth and surface passivation of near-surface InGaAs quantum wells on GaAs (1 1 0). <i>Journal of Crystal Growth</i> , 2007 , 309, 18-24	1.6	5
137	Efficient light coupling into a photonic crystal waveguide with flatband slow mode. <i>Photonics and Nanostructures - Fundamentals and Applications</i> , 2008 , 6, 127-133	2.6	5
136	Morphology of ultra-thin cubic GaN layers on GaAs(1 0 0) grown by MOVPE with DMHy as nitrogen source. <i>Applied Surface Science</i> , 2004 , 222, 286-292	6.7	5
135	Effect Of Inp Passivation On Carrier Recombination in InxGa1-xAs/GaAs Surface Quantum Wells. Japanese Journal of Applied Physics, 1999 , 38, 1133-1134	1.4	5
134	All-parylene flexible wafer-scale graphene thin film transistor. <i>Applied Surface Science</i> , 2021 , 551, 1494	16 .7	5
133	Optical characterization of directly deposited graphene on a dielectric substrate. <i>Optics Express</i> , 2016 , 24, 2965-70	3.3	5
132	New method for MBE growth of GaAs nanowires on silicon using colloidal Au nanoparticles. <i>Nanotechnology</i> , 2018 , 29, 045602	3.4	5
131	Low-Power Continuous-Wave Second Harmonic Generation in Semiconductor Nanowires. <i>Laser and Photonics Reviews</i> , 2018 , 12, 1800126	8.3	4
130	Effects of Zn doping on GaAs nanowires 2014 ,		4
129	Stress distribution in GaN nanopillars using confocal Raman mapping technique. <i>Applied Physics Letters</i> , 2014 , 104, 151906	3.4	4
128	Yield and leakage currents of large area lattice matched InP/InGaAs heterostructures. <i>Journal of Applied Physics</i> , 2014 , 116, 083105	2.5	4
127	Exceptionally strong and robust millimeter-scale graphene-alumina composite membranes. <i>Nanotechnology</i> , 2014 , 25, 355701	3.4	4
126	Temperature Dependence of Current-Voltage Characteristics of Au/Ga0.51In0.49P Schottky Barrier Diodes 2011 ,		4

125	Tunneling Explanation for the Temperature Dependence of Current Voltage Characteristics of Pt/InN Schottky Barrier Diodes. <i>Japanese Journal of Applied Physics</i> , 2009 , 48, 070201	1.4	4	
124	ATOMIC LAYER DEPOSITION HFO2 FILM USED AS BUFFER LAYER OF THE Pt/(Bi0.95Nd0.05)(Fe0.95Mn0.05)O3/HFO2/Si CAPACITORS FOR FeFET APPLICATION. <i>Journal of Advanced Dielectrics</i> , 2011 , 01, 369-377	1.3	4	
123	Characterization of InGaN/GaN and AlGaN/GaN superlattices by X-ray diffraction and X-ray reflectivity measurements. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2010 , 7, 1790-179	93	4	
122	Reduction of threading dislocation density in Al0.12Ga0.88N epilayers by a multistep technique. Journal of Crystal Growth, 2007 , 298, 276-280	1.6	4	
121	Synchrotron X-ray topography study of defects in epitaxial GaAs on high-quality Ge. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2006 , 563, 62-65	1.2	4	
120	Optical waveguides on polysilicon-on-insulator. <i>Journal of Materials Science: Materials in Electronics</i> , 2003 , 14, 417-420	2.1	4	
119	In(Ga)As quantum dots on Ge substrate. <i>Journal of Materials Science: Materials in Electronics</i> , 2003 , 14, 349-352	2.1	4	
118	Growth and Optical Properties of Strain-induced Quantum Dots. <i>Physica Scripta</i> , 1999 , T79, 20	2.6	4	
117	Nonlinear optical absorption properties of InP nanowires and applications as a saturable absorber. <i>Photonics Research</i> , 2020 , 8, 1035	6	4	
116	Applied electromagnetic optics simulations for nanophotonics. <i>Journal of Applied Physics</i> , 2021 , 129, 131102	2.5	4	
115	Growth of GaAs nanowiregraphite nanoplatelet hybrid structures. CrystEngComm, 2019, 21, 6165-6172	3.3	3	
114	Optical limiting in solutions of InP and GaAs nanowires and hybrid systems based on such nanocrystals. <i>Technical Physics Letters</i> , 2015 , 41, 120-123	0.7	3	
113	Management of light and scattering in InP NWs by dielectric polymer shell. <i>Nanotechnology</i> , 2020 , 31, 384003	3.4	3	
112	Lifetimes of the Vibrational States of DNA Molecules in Functionalized Complexes of Semiconductor Quantum Dots. <i>Technical Physics Letters</i> , 2018 , 44, 70-72	0.7	3	
111	Nonlinear Optics: Nonlinear Optics with 2D Layered Materials (Adv. Mater. 24/2018). <i>Advanced Materials</i> , 2018 , 30, 1870172	24	3	
110	Properties of atomic-layer-deposited ultra-thin AlN films on GaAs surfaces. <i>Applied Surface Science</i> , 2014 , 314, 570-574	6.7	3	
109	High-resolution Raman scattering in oligonucleotides. <i>Physics of the Solid State</i> , 2014 , 56, 1273-1275	0.8	3	
108	High-resolution Raman scattering in oligonucleotides. <i>Technical Physics Letters</i> , 2014 , 40, 340-342	0.7	3	

107	Evaluation of critical thickness of GaP0.98N0.02 layer on GaP substrate by synchrotron X-ray diffraction topography. <i>Thin Solid Films</i> , 2013 , 534, 680-684	2.2	3
106	Probing the longitudinal electric field of Bessel beams using second-harmonic generation from nano-objects. <i>Journal of Optics (United Kingdom)</i> , 2017 , 19, 084011	1.7	3
105	Nonlinear imaging of nanostructures using beams with binary phase modulation. <i>Optics Express</i> , 2017 , 25, 10441-10448	3.3	3
104	Observation of linear I-V curves on vertical GaAs nanowires with atomic force microscope. <i>Journal of Physics: Conference Series</i> , 2015 , 661, 012031	0.3	3
103	Characterization of InGaAs/GaNAs strain-compensated quantum dot solar cells. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2012 , 9, 972-974		3
102	TlBr purification and single crystal growth for the detector applications. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2011 , 633, S72-S74	1.2	3
101	Building molecular surface gradients with electron beam lithography. <i>Journal of Micromechanics and Microengineering</i> , 2011 , 21, 054025	2	3
100	Emission of terahertz radiation from GaN under impact ionization of donors in an electric field. <i>Bulletin of the Russian Academy of Sciences: Physics</i> , 2010 , 74, 86-88	0.4	3
99	Amorphous silicon optical waveguides and Bragg mirrors 2008,		3
98	Comparison of H2 and N2 as carrier gas in MOVPE growth of InGaAsN quantum wells. <i>Journal of Crystal Growth</i> , 2007 , 298, 536-539	1.6	3
97	In-situ optical reflectance and synchrotron X-ray topography study of defects in epitaxial dilute GaAsN on GaAs. <i>Journal of Materials Science: Materials in Electronics</i> , 2008 , 19, 137-142	2.1	3
96	In situ determination of nitrogen content in InGaAsN quantum wells. <i>Journal of Applied Physics</i> , 2006 , 100, 013509	2.5	3
95	In situ determination of InGaAs and GaAsN composition in multiquantum-well structures. <i>Journal of Applied Physics</i> , 2007 , 101, 033533	2.5	3
94	Tensile-strained GaAsN quantum dots on InP. <i>Applied Physics Letters</i> , 2007 , 90, 172110	3.4	3
93	Ge/GaAs heterostructure matrix detector. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 2006 , 563, 17-20	1.2	3
92	GaN/GaAs(1 0 0) superlattices grown by metalorganic vapor phase epitaxy using dimethylhydrazine precursor. <i>Journal of Crystal Growth</i> , 2004 , 270, 346-350	1.6	3
91	Self-assembled In(Ga) As islands on Ge substrate. <i>Journal of Crystal Growth</i> , 2004 , 272, 221-226	1.6	3
90	Photoluminescence study of strain-induced GaInNAs/GaAs quantum dots. <i>Journal of Materials Science: Materials in Electronics</i> , 2003 , 14, 357-360	2.1	3

(2011-2005)

89	Evolution of Self-Assembled InAs/InP Islands into Quantum Rings. <i>Japanese Journal of Applied Physics</i> , 2005 , 44, L1323-L1325	1.4	3
88	Influence of Coulomb and Exchange Interaction on Quantum Dot Magnetoluminescence up to B = 45 T. <i>Physica Status Solidi A</i> , 2000 , 178, 263-268		3
87	Optical spectroscopy of bragg confined transitions in a superlattice with multiquantum barriers. <i>Solid State Communications</i> , 1995 , 93, 525-528	1.6	3
86	Growth and properties of self-catalyzed (In,Mn)As nanowires. <i>Physica Status Solidi - Rapid Research Letters</i> , 2016 , 10, 554-557	2.5	3
85	Direct measurement of elastic modulus of InP nanowires with Scanning Probe Microscopy in PeakForce QNM mode. <i>Journal of Physics: Conference Series</i> , 2016 , 769, 012029	0.3	3
84	TEM study of defect structure of GaN epitaxial films grown on GaN/Al2O3 substrates with buried column pattern. <i>Journal of Crystal Growth</i> , 2016 , 445, 30-36	1.6	3
83	Optical Properties of Bulk Gallium Oxide Grown from the Melt. <i>Reviews on Advanced Materials Science</i> , 2018 , 57, 97-103	4.8	3
82	Giant All-Optical Modulation of Second-Harmonic Generation Mediated by Dark Excitons. <i>ACS Photonics</i> , 2021 , 8, 2320-2328	6.3	3
81	Experimental Study and Simulation of the Spectral Characteristics of LED Heterostructures with an InAs Active Region. <i>Technical Physics Letters</i> , 2020 , 46, 150-153	0.7	2
80	Functionalization of nc-Si/SiO2 semiconductor quantum dots by oligonucleotides. <i>Semiconductors</i> , 2014 , 48, 1485-1489	0.7	2
79	Electrical detection of picosecond acoustic pulses in vertical transport devices with nanowires. <i>Applied Physics Letters</i> , 2014 , 104, 062102	3.4	2
78	Fabrication of GaN structures with embedded network of voids using pillar patterned GaN templates. <i>Journal of Crystal Growth</i> , 2013 , 370, 42-45	1.6	2
77	MBE growth of nanowires using colloidal Ag nanoparticles. <i>Journal of Physics: Conference Series</i> , 2017 , 864, 012010	0.3	2
76	Resonant raman scattering in complexes of nc-Si/SiO2 quantum dots and oligonucleotides. <i>Technical Physics Letters</i> , 2014 , 40, 1035-1037	0.7	2
75	MOCVD growth and characterization of near-surface InGaN/GaN single quantum wells for non-radiative coupling of optical excitations. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2012 , 9, 1667-1669		2
74	Temperature dependence of droop onset in optically pumped intrinsic InGaAs/InP heterostructures. <i>Applied Physics Letters</i> , 2013 , 102, 081123	3.4	2
73	Analysis of Dislocations Generated during Metal®rganic Vapor Phase Epitaxy of GaN on Patterned Templates. <i>Japanese Journal of Applied Physics</i> , 2013 , 52, 01AF01	1.4	2
72	Electrical properties of CVD-graphene FETs 2011 ,		2

71	X-ray diffraction study of GaN grown on patterned substrates. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2011 , 8, 1524-1527		2
7°	Forward Bias Capacitance-Voltage Measurements on Semiconductors Using Co-Planar Ohmic and Schottky Contacts in a Cylindrical Geometry. <i>Journal of Nano Research</i> , 2010 , 12, 45-54	1	2
69	GaAs Nanowire and Crystallite Growth on Amorphous Substrate from Metalorganic Precursors. Japanese Journal of Applied Physics, 2010 , 49, 020213	1.4	2
68	Carrier dynamics in strain-induced InGaAsP/InP quantum dots. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2006 , 32, 179-182	3	2
67	Effect of post-growth laser treatment on optical properties of Ga(In)NAs quantum wells. <i>IEE Proceedings: Optoelectronics</i> , 2003 , 150, 68		2
66	Highly Tunable Emission from Strain-Induced InGaAsP/InP Quantum Dots. <i>Japanese Journal of Applied Physics</i> , 2005 , 44, L976-L978	1.4	2
65	Effects of electronfiole correlation in quantum dots under high magnetic field (up to 45 T). <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2000 , 7, 346-349	3	2
64	Fabrication of GaInAs quantum disks using self-organized InP islands as a mask in wet chemical etching. <i>Applied Physics Letters</i> , 1996 , 69, 4029-4031	3.4	2
63	Photoluminescence of buried InGaAs grown on nanoscale InP islands by MOVPE. <i>Journal of Crystal Growth</i> , 1994 , 145, 988-989	1.6	2
62	Synchrotron section topographic study of defects in InP substrates and quaternary laser structures. Journal of Crystal Growth, 1989 , 96, 881-887	1.6	2
61	Direct comparison of second and third harmonic generation in mono- and few-layer MX2 (M=Mo,W; X=S,Se) by multiphoton microscope 2016 ,		2
60	. Chinese Optics Letters, 2019 , 17, 062301	2.2	2
59	Multilayer MoTe2 Field-Effect Transistor at High Temperatures. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100950	4.6	2
58	Tuning of Emission Wavelength of CaS:Eu by Addition of Oxygen Using Atomic Layer Deposition. <i>Materials</i> , 2021 , 14,	3.5	2
57	Hybrid GaAs nanowire-polymer device on glass: Al-doped ZnO (AZO) as transparent conductive oxide for nanowire based photovoltaic applications. <i>Journal of Crystal Growth</i> , 2020 , 548, 125840	1.6	2
56	Deterministic Modification of CVD Grown Monolayer MoS2 with Optical Pulses. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2002119	4.6	2
55	Resonant features of the terahertz generation in semiconductor nanowires. <i>Semiconductors</i> , 2016 , 50, 1561-1565	0.7	2
54	Low-Temperature Plasma-Enhanced Atomic Layer Deposition of SiO Using Carbon Dioxide. Nanoscale Research Letters, 2019 , 14, 55	5	2

(2006-2021)

53	GaAs surface passivation for InAs/GaAs quantum dot based nanophotonic devices. <i>Nanotechnology</i> , 2021 , 32, 130001	3.4	2
52	Wide-band 'black silicon' with atomic layer deposited NbN. <i>Nanotechnology</i> , 2018 , 29, 335303	3.4	2
51	Ultrafast carrier dynamics and nonlinear optical response of InAsP nanowires. <i>Photonics Research</i> , 2021 , 9, 1811	6	2
50	Site-specific growth of oriented ZnO nanocrystal arrays. <i>Beilstein Journal of Nanotechnology</i> , 2019 , 10, 274-280	3	1
49	The effect of resonant Mie absorption under THz radiation emission in semiconductor nanowires. <i>Optics and Spectroscopy (English Translation of Optika I Spektroskopiya)</i> , 2015 , 119, 754-758	0.7	1
48	Metalorganic vapor phase epitaxy of wurtzite InP nanowires on GaN. <i>Applied Physics Letters</i> , 2020 , 116, 093101	3.4	1
47	Lithography-free shell-substrate isolation for core-shell GaAs nanowires. <i>Nanotechnology</i> , 2016 , 27, 275	560B	1
46	Synchrotron X-ray diffraction topography study of bonding-induced strain in silicon-on-insulator wafers. <i>Thin Solid Films</i> , 2016 , 603, 435-440	2.2	1
45	New method of determining the young Modulus of (Ga,Mn)As nanowhiskers with a scanning electron microscope. <i>Physics of the Solid State</i> , 2013 , 55, 2229-2233	0.8	1
44	Versatile Water-Based Transfer of Large-Area Graphene Films onto Flexible Substrates. <i>MRS Advances</i> , 2017 , 2, 3749-3754	0.7	1
43	Optically excited THz generation from ordered arrays of GaAs nanowires. <i>Procedia Engineering</i> , 2017 , 201, 100-104		1
42	Radiation detectors fabricated on high-purity GaAs epitaxial materials. <i>Journal of Instrumentation</i> , 2014 , 9, C12024-C12024	1	1
41	Effect of atomic-layer-deposited AlN on near-surface InGaAs/GaAs structures. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2012 , 9, 1560-1562		1
40	Enhanced 1.3 µm luminescence from InGaAs self-assembled quantum dots with a GaAsN strain-compensating layer. <i>Semiconductor Science and Technology</i> , 2011 , 26, 085029	1.8	1
39	Growth of CVD graphene on copper by rapid thermal processing. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1451, 27-32		1
38	Recent progress towards acoustically mediated carrier injection into individual nanostructures for single photon generation 2010 ,		1
37	Synchrotron X-ray topography and electrical characterization of epitaxial GaAs plb structures. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 591, 192-195	1.2	1
36	Effect of surface states on carrier dynamics in InGaAsP/InP stressor quantum dots. <i>Nanotechnology</i> , 2006 , 17, 2181-2186	3.4	1

35	The morphology of an InP wetting layer on GaAs. Applied Surface Science, 2004, 229, 333-337	6.7	1
34	Photonic crystal slabs with ring-shaped holes in a triangular lattice		1
33	Synchrotron X-ray topographic study of dislocations and stacking faults in InAs. <i>Journal of Crystal Growth</i> , 2005 , 283, 320-327	1.6	1
32	Praseodymium Dioxide Doping of In1\(\text{In1} I		1
31	Fabrication of nanostructures using MBE and MOVPE. <i>Physica Scripta</i> , 1994 , T54, 241-243	2.6	1
30	InSb Nanowire Direct Growth on Plastic for Monolithic Flexible Device Fabrication. <i>ACS Applied Electronic Materials</i> , 2022 , 4, 539-545	4	1
29	Optical amplification by surface-plasmon-resonant Au grating substrates: Monolayer MoS2 with 170-fold second harmonic generation and 3-fold (off-resonance) Raman scattering. <i>Superlattices and Microstructures</i> , 2021 , 160, 107077	2.8	1
28	Nanowire-assisted microcavity in a photonic crystal waveguide and the enabled high-efficiency optical frequency conversions. <i>Photonics Research</i> , 2020 , 8, 1734	6	1
27	Thermoelectric Characteristics of InAs Nanowire Networks Directly Grown on Flexible Plastic Substrates. ACS Applied Energy Materials,	6.1	1
26	Ultrafast carrier dynamics in GaAs nanowires. Lithuanian Journal of Physics, 2014, 54, 41-45	1.1	1
25	Surface potential response from GaP nanowires synthesized with mixed crystal phases. <i>Journal of Physics: Conference Series</i> , 2019 , 1400, 044018	0.3	1
24	Tailoring the longitudinal electric fields of high-order laser beams and their direct verification in three dimensions. <i>Optics Communications</i> , 2020 , 459, 124894	2	1
23	Nanowire Oligomer Waveguide Modes towards Reduced Lasing Threshold. <i>Materials</i> , 2020 , 13,	3.5	1
22	Symmetry Reduction in FEM Optics Modeling of Single and Periodic Nanostructures. <i>Symmetry</i> , 2021 , 13, 752	2.7	1
21	Effect of crystal structure on the Young's modulus of GaP nanowires. Nanotechnology, 2021, 32,	3.4	1
20	WITio: A MATLAB data evaluation toolbox to script broader insights into big data from WITec microscopes. <i>SoftwareX</i> , 2022 , 18, 101009	2.7	1
19	Direct GaAs Nanowire Growth and Monolithic Light-Emitting Diode Fabrication on Flexible Plastic Substrates. <i>Advanced Photonics Research</i> ,2100311	1.9	1
18	Engineering the Dipole Orientation and Symmetry Breaking with Mixed-Dimensional Heterostructures <i>Advanced Science</i> , 2022 , e2200082	13.6	1

LIST OF PUBLICATIONS

17	Femtosecond Mode-locked Yb:KYW Laser Based on InP Nanowire Saturable Absorber. <i>IEEE Photonics Technology Letters</i> , 2022 , 1-1	2.2	O
16	Probing Electronic States in Monolayer Semiconductors through Static and Transient Third-Harmonic Spectroscopies. <i>Advanced Materials</i> , 2021 , e2107104	24	O
15	Surface passivation of GaAs nanowires by the atomic layer deposition of AlN. <i>Semiconductors</i> , 2016 , 50, 1619-1621	0.7	O
14	Determination of Young Modulus of Wurtzite III Nanowires by the Methods of Scanning Probe Microscopy. <i>Journal of Surface Investigation</i> , 2019 , 13, 53-55	0.5	
13	Photodegradation of surface passivated GaAs nanowires. <i>Journal of Physics: Conference Series</i> , 2020 , 1461, 012002	0.3	
12	Ultrafast Dynamics of Photoinduced Electron⊞ole Plasma in Semiconductor Nanowires. <i>Semiconductors</i> , 2018 , 52, 19-23	0.7	
11	Leakage currents of large area InP/InGaAs heterostructures. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1635, 75-81		
10	FABRICATION AND OPTICAL PROPERTIES OF METAL-COATED NON-CLOSE-PACKED COLLOIDAL CRYSTALS. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2009 , 18, 633-640	0.8	
9	Carrier Dynamics in Strain Induced Quantum Dots Modeled by Rate Equations and Gaussian Excitation Beam Distribution. <i>Japanese Journal of Applied Physics</i> , 2008 , 47, 5499-5502	1.4	
8	Study of composition control and capping of MOVPE grown InGaN/InxAlyGa1IIIN MQW structures. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2008 , 5, 3020-3022		
7	Simultaneous determination of indium and nitrogen contents of InGaAsN quantum wells by optical in situ monitoring. <i>Applied Physics Letters</i> , 2006 , 89, 231919	3.4	
6	Growth of GaAs on polycrystalline silicon-on-insulator. <i>Journal of Materials Science: Materials in Electronics</i> , 2003 , 14, 403-405	2.1	
5	Synchrotron X-ray topographic analysis of the impact of processing steps on the fabrication of AlGaAs/InGaAs p-HEMT's. <i>IEEE Transactions on Electron Devices</i> , 1996 , 43, 1085-1091	2.9	
4	Growth and characterization of a GaAs/AlAs superlattice with variable layer thicknesses. <i>Journal of Electronic Materials</i> , 1994 , 23, 465-470	1.9	
3	Study of GaAs/AlGaAs and InGaAs/InP quantum well structures using low-field transverse electroreflectance 1990 , 1286, 300		
2	Photoreflectance studies of InGaAs/InP superlattices 1990 , 1286, 238		
1	Optical Modification of Monolayer MoS2: Deterministic Modification of CVD Grown Monolayer MoS2 with Optical Pulses (Adv. Mater. Interfaces 10/2021). <i>Advanced Materials Interfaces</i> , 2021 , 8, 217	0056	