Deborah J Stearns-Kurosawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8371734/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The endothelial cell protein C receptor augments protein C activation by the thrombin-thrombomodulin complex Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 10212-10216.	7.1	512
2	The Pathogenesis of Sepsis. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 19-48.	22.4	479
3	Sepsis: Multiple Abnormalities, Heterogeneous Responses, and Evolving Understanding. Physiological Reviews, 2013, 93, 1247-1288.	28.8	324
4	The endothelial cell protein C receptor aids in host defense against Escherichia coli sepsis. Blood, 2000, 95, 1680-1686.	1.4	302
5	Identification of functional endothelial protein C receptor in human plasma Journal of Clinical Investigation, 1997, 100, 411-418.	8.2	147
6	Shiga Toxins and the Pathophysiology of Hemolytic Uremic Syndrome in Humans and Animals. Toxins, 2012, 4, 1261-1287.	3.4	131
7	The Endothelial Cell Protein C Receptor. Journal of Biological Chemistry, 1996, 271, 17491-17498.	3.4	123
8	The Soluble Endothelial Protein C Receptor Binds to Activated Neutrophils: Involvement of Proteinase-3 and CD11b/CD18. Journal of Immunology, 2000, 165, 4697-4703.	0.8	123
9	Endothelial Protein C Receptor. Thrombosis and Haemostasis, 1999, 82, 251-258.	3.4	107
10	The Protein C Pathway: New Insights. Thrombosis and Haemostasis, 1997, 78, 070-074.	3.4	95
11	Sepsis and Pathophysiology of Anthrax in a Nonhuman Primate Model. American Journal of Pathology, 2006, 169, 433-444.	3.8	90
12	A phase II trial of thalidomide in patients with refractory endometrial cancer and correlation with angiogenesis biomarkers: A Gynecologic Oncology Group study. Gynecologic Oncology, 2007, 105, 508-516.	1.4	90
13	The endothelial cell protein C receptor aids in host defense against Escherichia coli sepsis. Blood, 2000, 95, 1680-6.	1.4	87
14	Plasma Bacterial and Mitochondrial DNA Distinguish Bacterial Sepsis From Sterile Systemic Inflammatory Response Syndrome and Quantify Inflammatory Tissue Injury in Nonhuman Primates. Shock, 2013, 39, 55-62.	2.1	85
15	The Endothelial Cell Protein C Receptor. Journal of Biological Chemistry, 1996, 271, 17499-17503.	3.4	77
16	Regulation and functions of the protein C anticoagulant pathway. Haematologica, 1999, 84, 363-8.	3.5	69
17	Plasma levels of endothelial cell protein C receptor are elevated in patients with sepsis and systemic lupus erythematosus: lack of correlation with thrombomodulin suggests involvement of different pathological processes. Blood, 1998, 91, 725-7.	1.4	66
18	Plasma levels of endothelial protein C receptor respond to anticoagulant treatment. Blood, 2002, 99, 526-530	1.4	60

#	Article	IF	CITATIONS
19	EPCR Ser219Gly: Elevated sEPCR, prothrombin F1+2, risk for coronary heart disease, and increased sEPCR shedding in vitro. Atherosclerosis, 2005, 183, 283-292.	0.8	56
20	Distinct Physiologic and Inflammatory Responses Elicited in Baboons after Challenge with Shiga Toxin Type 1 or 2 from Enterohemorrhagic <i>Escherichia coli</i> . Infection and Immunity, 2010, 78, 2497-2504.	2.2	55
21	Impaired function of the Tie-2 receptor contributes to vascular leakage and lethality in anthrax. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10024-10029.	7.1	50
22	Complement, thrombotic microangiopathy and disseminated intravascular coagulation. Journal of Intensive Care, 2014, 2, 65.	2.9	50
23	PROC,PROCR andPROS1 polymorphisms, plasma anticoagulant phenotypes, and risk of cardiovascular disease and mortality in older adults: the Cardiovascular Health Study. Journal of Thrombosis and Haemostasis, 2008, 6, 1625-1632.	3.8	47
24	A Chimeric Protein C Containing the Prothrombin Gla Domain Exhibits Increased Anticoagulant Activity and Altered Phospholipid Specificity. Journal of Biological Chemistry, 1998, 273, 9031-9040.	3.4	43
25	Rescue from lethal Shiga toxin 2-induced renal failure with a cell-permeable peptide. Pediatric Nephrology, 2011, 26, 2031-2039.	1.7	41
26	A phase II trial of thalidomide in patients with refractory leiomyosarcoma of the uterus and correlation with biomarkers of angiogenesis: A gynecologic oncology group study. Gynecologic Oncology, 2007, 106, 596-603.	1.4	39
27	Distinct Renal Pathology and a Chemotactic Phenotype after Enterohemorrhagic Escherichia coli Shiga Toxins in Non-Human Primate Models of Hemolytic Uremic Syndrome. American Journal of Pathology, 2013, 182, 1227-1238.	3.8	35
28	Shiga Toxin Therapeutics: Beyond Neutralization. Toxins, 2017, 9, 291.	3.4	29
29	Reduced Neutrophil CD10 Expression in Nonhuman Primates and Humans After In Vivo Challenge with E. coli or Lipopolysaccharide. Shock, 2003, 20, 130-137.	2.1	27
30	Plasma levels of soluble endothelial cell protein C receptor in patients with Wegener's granulomatosis. Clinical and Experimental Immunology, 2002, 128, 187-194.	2.6	23
31	Bimodal distribution of soluble endothelial protein C receptor levels in healthy populations. Journal of Thrombosis and Haemostasis, 2003, 1, 855-856.	3.8	20
32	Quiescent complement in nonhuman primates during E coli Shiga toxin-induced hemolytic uremic syndrome and thrombotic microangiopathy. Blood, 2013, 122, 803-806.	1.4	20
33	The protein C pathway: new insights. Thrombosis and Haemostasis, 1997, 78, 70-4.	3.4	19
34	PROTEINASE 3 EXPRESSION ON NEUTROPHIL MEMBRANES FROM PATIENTS WITH INFECTIOUS DISEASE. Shock, 2006, 26, 128-133.	2.1	18
35	The effect of calcium ionophore A23187 on tissue factor activity and mRNA in endothelial cells. Thrombosis Research, 1994, 74, 95-103.	1.7	17
36	Soluble thrombomodulin: A sign of bad times*. Critical Care Medicine, 2008, 36, 985-987.	0.9	12

#	Article	IF	CITATIONS
37	Pro-Coagulant Endothelial Dysfunction Results from EHEC Shiga Toxins and Host Damage-Associated Molecular Patterns. Frontiers in Immunology, 2015, 6, 155.	4.8	12
38	Shiga Toxin 2-Induced Endoplasmic Reticulum Stress Is Minimized by Activated Protein C but Does Not Correlate with Lethal Kidney Injury. Toxins, 2015, 7, 170-186.	3.4	11
39	A computational solution to improve biomarker reproducibility during long-term projects. PLoS ONE, 2019, 14, e0209060.	2.5	7
40	Dextran Sulfate Sodium Colitis Facilitates Colonization with Shiga Toxin-Producing Escherichia coli: a Novel Murine Model for the Study of Shiga Toxicosis. Infection and Immunity, 2018, 86, .	2.2	5
41	Infection of Immunocompetent Conventional Mice with Shiga Toxin-Producing E. coli: The DSSÂ+ÂSTEC Model. Methods in Molecular Biology, 2021, 2291, 353-364.	0.9	0