Arben Merkoçi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8371679/publications.pdf

Version: 2024-02-01

5574 25,939 327 82 citations h-index papers

g-index 343 343 343 25094 docs citations times ranked citing authors all docs

7950

149

#	Article	IF	Citations
1	Metabolomics for personalized medicine: the input of analytical chemistry from biomarker discovery to point-of-care tests. Analytical and Bioanalytical Chemistry, 2022, 414, 759-789.	3.7	43
2	Label-free and reagentless electrochemical genosensor based on graphene acid for meat adulteration detection. Biosensors and Bioelectronics, 2022, 195, 113628.	10.1	25
3	A plug, print & play inkjet printing and impedance-based biosensing technology operating through a smartphone for clinical diagnostics. Biosensors and Bioelectronics, 2022, 196, 113737.	10.1	28
4	Low-Cost, User-Friendly, All-Integrated Smartphone-Based Microplate Reader for Optical-Based Biological and Chemical Analyses. Analytical Chemistry, 2022, 94, 1271-1285.	6.5	29
5	Optical smartphone-based sensing: diagnostic of biomarkers. , 2022, , 277-302.		1
6	An innovative autonomous robotic system for on-site detection of heavy metal pollution plumes in surface water. Environmental Monitoring and Assessment, 2022, 194, 122.	2.7	12
7	Point-of-Care Sensors in Clinical Environments: Potential and Challenges. , 2022, , .		1
8	Wearable and fully printed microfluidic nanosensor for sweat rate, conductivity, and copper detection with healthcare applications. Biosensors and Bioelectronics, 2022, 202, 114005.	10.1	29
9	Signal enhancement strategies. , 2022, , 123-168.		O
10	A Novel Ratiometric Fluorescent Approach for the Modulation of the Dynamic Range of Lateral Flow Immunoassays. Advanced Materials Technologies, 2022, 7, .	5.8	17
11	Editorial on COVID-19 biosensing technologies- 2d Edition. Biosensors and Bioelectronics, 2022, 212, 114340.	10.1	1
12	Paper-based biosensors for cancer diagnostics. Trends in Chemistry, 2022, 4, 554-567.	8. 5	14
13	A Programmable Electrochemical Yâ€Shaped DNA Scaffold Sensor for the Singleâ€Step Detection of Antibodies and Proteins in Untreated Biological Fluids. Advanced Functional Materials, 2022, 32, .	14.9	10
14	ATP Sensing Paper with Smartphone Bioluminescence-Based Detection. Methods in Molecular Biology, 2022, , 297-307.	0.9	2
15	Graphene Nanobeacons with Highâ€Affinity Pockets for Combined, Selective, and Effective Decontamination and Reagentless Detection of Heavy Metals. Small, 2022, 18, .	10.0	6
16	Improved Aliivibrio fischeri based-toxicity assay: Graphene-oxide as a sensitivity booster with a mobile-phone application. Journal of Hazardous Materials, 2021, 406, 124434.	12.4	9
17	Integrating gold nanoclusters, folic acid and reduced graphene oxide for nanosensing of glutathione based on "turn-off―fluorescence. Scientific Reports, 2021, 11, 2375.	3.3	29
18	Lateral flow device for water fecal pollution assessment: from troubleshooting of its microfluidics using bioluminescence to colorimetric monitoring of generic <i>Escherichia coli</i> Lab on A Chip, 2021, 21, 2417-2426.	6.0	19

#	Article	IF	CITATIONS
19	The Microbiome Meets Nanotechnology: Opportunities and Challenges in Developing New Diagnostic Devices. Advanced Materials, 2021, 33, e2006104.	21.0	24
20	Nonâ€Invasive Diagnostics: Integrated Devices for Nonâ€Invasive Diagnostics (Adv. Funct. Mater. 15/2021). Advanced Functional Materials, 2021, 31, 2170105.	14.9	2
21	COVID-19 biosensing technologies. Biosensors and Bioelectronics, 2021, 178, 113046.	10.1	30
22	Microbiome and Nanotechnology: The Microbiome Meets Nanotechnology: Opportunities and Challenges in Developing New Diagnostic Devices (Adv. Mater. 18/2021). Advanced Materials, 2021, 33, 2170139.	21.0	0
23	Electrochromism: An emerging and promising approach in (bio)sensing technology. Materials Today, 2021, 50, 476-498.	14.2	33
24	Rapid and Efficient Detection of the SARS-CoV-2 Spike Protein Using an Electrochemical Aptamer-Based Sensor. ACS Sensors, 2021, 6, 3093-3101.	7.8	129
25	Integrated Devices for Nonâ€Invasive Diagnostics. Advanced Functional Materials, 2021, 31, 2010388.	14.9	51
26	Paper-Based Electrophoretic Bioassay: Biosensing in Whole Blood Operating via Smartphone. Analytical Chemistry, 2021, 93, 3112-3121.	6.5	21
27	Attomolar analyte sensing techniques (AttoSens): a review on a decade of progress on chemical and biosensing nanoplatforms. Chemical Society Reviews, 2021, 50, 13012-13089.	38.1	25
28	Development of a Heavy Metal Sensing Boat for Automatic Analysis in Natural Waters Utilizing Anodic Stripping Voltammetry. ACS ES&T Water, 2021, 1, 2470-2476.	4.6	5
29	Nanodiagnostics to Face SARS-CoV-2 and Future Pandemics: From an Idea to the Market and Beyond. ACS Nano, 2021, 15, 17137-17149.	14.6	32
30	Smart nanobiosensors in agriculture. Nature Food, 2021, 2, 920-921.	14.0	8
31	Selective stamping of laser scribed rGO nanofilms: from sensing to multiple applications. 2D Materials, 2020, 7, 024006.	4.4	10
32	Experimental Comparison in Sensing Breast Cancer Mutations by Signal ON and Signal OFF Paper-Based Electroanalytical Strips. Analytical Chemistry, 2020, 92, 1674-1679.	6.5	43
33	Highly Loaded Mildly Edgeâ€Oxidized Graphene Nanosheet Dispersions for Largeâ€Scale Inkjet Printing of Electrochemical Sensors. ChemElectroChem, 2020, 7, 460-468.	3.4	11
34	Nano-lantern on paper for smartphone-based ATP detection. Biosensors and Bioelectronics, 2020, 150, 111902.	10.1	53
35	Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nature Protocols, 2020, 15, 3788-3816.	12.0	235
36	Lateral flow assay modified with time-delay wax barriers as a sensitivity and signal enhancement strategy. Biosensors and Bioelectronics, 2020, 168, 112559.	10.1	43

#	Article	IF	Citations
37	Graphene-based biosensors. 2D Materials, 2020, 7, 040401.	4.4	8
38	Recent advancement in biomedical applications on the surface of two-dimensional materials: from biosensing to tissue engineering. Nanoscale, 2020, 12, 19043-19067.	5.6	50
39	Organic-based field effect transistors for protein detection fabricated by inkjet-printing. Organic Electronics, 2020, 84, 105794.	2.6	13
40	Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS Nano, 2020, 14, 6383-6406.	14.6	455
41	Nanoparticle-based lateral flow assays. Comprehensive Analytical Chemistry, 2020, 89, 313-359.	1.3	5
42	Chitin Nanofiber Paper toward Optical (Bio)sensing Applications. ACS Applied Materials & Samp; Interfaces, 2020, 12, 15538-15552.	8.0	64
43	Nanomaterials for Nanotheranostics: Tuning Their Properties According to Disease Needs. ACS Nano, 2020, 14, 2585-2627.	14.6	239
44	Lab in a Tube: Point-of-Care Detection of <i>Escherichia coli</i> . Analytical Chemistry, 2020, 92, 4209-4216.	6.5	50
45	Inkjet-printed electrochemically reduced graphene oxide microelectrode as a platform for HT-2 mycotoxin immunoenzymatic biosensing. Biosensors and Bioelectronics, 2020, 156, 112109.	10.1	44
46	2-dimensional materials-based electrical/optical platforms for smart on-off diagnostics applications. 2D Materials, 2020, 7, 032001.	4.4	25
47	Graphene Oxide as an Optical Biosensing Platform: A Progress Report. Advanced Materials, 2019, 31, e1805043.	21.0	117
48	Nanomaterialâ€based Sensors for the Study of DNA Interaction with Drugs. Electroanalysis, 2019, 31, 1845-1867.	2.9	14
49	Smart Chip for Visual Detection of Bacteria Using the Electrochromic Properties of Polyaniline. Analytical Chemistry, 2019, 91, 14960-14966.	6.5	44
50	Optical-Based (Bio) Sensing Systems Using Magnetic Nanoparticles. Magnetochemistry, 2019, 5, 59.	2.4	19
51	Signal enhancement on gold nanoparticle-based lateral flow tests using cellulose nanofibers. Biosensors and Bioelectronics, 2019, 141, 111407.	10.1	53
52	Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Advanced Materials, 2019, 31, e1806739.	21.0	540
53	In Situ Plant Virus Nucleic Acid Isothermal Amplification Detection on Gold Nanoparticle-Modified Electrodes. Analytical Chemistry, 2019, 91, 4790-4796.	6.5	35
54	Paper Based Photoluminescent Sensing Platform with Recognition Sites for Tributyltin. ACS Sensors, 2019, 4, 645-653.	7.8	23

#	Article	IF	CITATIONS
55	Iridium oxide (IV) nanoparticle-based lateral flow immunoassay. Biosensors and Bioelectronics, 2019, 132, 132-135.	10.1	38
56	Electrochemical detection of plant virus using gold nanoparticle-modified electrodes. Analytica Chimica Acta, 2019, 1046, 123-131.	5.4	86
57	Production and printing of graphene oxide foam ink for electrocatalytic applications. Electrochemistry Communications, 2019, 98, 6-9.	4.7	9
58	Iridium oxide (IV) nanoparticle-based electrocatalytic detection of PBDE. Biosensors and Bioelectronics, 2019, 127, 150-154.	10.1	13
59	Fully printed one-step biosensing device using graphene/AuNPs composite. Biosensors and Bioelectronics, 2019, 129, 238-244.	10.1	39
60	Electrochromic Molecular Imprinting Sensor for Visual and Smartphone-Based Detections. Analytical Chemistry, 2018, 90, 5850-5856.	6.5	79
61	In situ monitoring of PTHLH secretion in neuroblastoma cells cultured onto nanoporous membranes. Biosensors and Bioelectronics, 2018, 107, 62-68.	10.1	32
62	Photoluminescent lateral flow based on non-radiative energy transfer for protein detection in human serum. Biosensors and Bioelectronics, 2018, 100, 208-213.	10.1	40
63	Architecting Graphene Oxide Rolledâ€Up Micromotors: A Simple Paperâ€Based Manufacturing Technology. Small, 2018, 14, 1702746.	10.0	29
64	Bioluminescent nanopaper for rapid screening of toxic substances. Nano Research, 2018, 11, 114-125.	10.4	11
65	Electrochemical Biosensors: Enzyme Kinetics and Role of Nanomaterials. , 2018, , 140-155.		13
66	Low-Cost Strategy for the Development of a Rapid Electrochemical Assay for Bacteria Detection Based on AuAg Nanoshells. ACS Omega, 2018, 3, 18849-18856.	3.5	31
67	Uranium (VI) detection in groundwater using a gold nanoparticle/paper-based lateral flow device. Scientific Reports, 2018, 8, 16157.	3.3	40
68	Nanomaterial-based devices for point-of-care diagnostic applications. Chemical Society Reviews, 2018, 47, 4697-4709.	38.1	276
69	Design and Fabrication of Printed Paperâ∈Based Hybrid Microâ∈Supercapacitor by using Graphene and Redoxâ∈Active Electrolyte. ChemSusChem, 2018, 11, 1849-1856.	6.8	46
70	Screen-Printed Electroluminescent Lamp Modified with Graphene Oxide as a Sensing Device. ACS Applied Materials & Device. ACS A	8.0	20
71	2D Materialsâ€based Platforms for Electroanalysis Applications. Electroanalysis, 2018, 30, 1271-1280.	2.9	20
72	Microorganism-decorated nanocellulose for efficient diuron removal. Chemical Engineering Journal, 2018, 354, 1083-1091.	12.7	37

#	Article	IF	CITATIONS
73	Time- and Size-Resolved Plasmonic Evolution with nm Resolution of Galvanic Replacement Reaction in AuAg Nanoshells Synthesis. Chemistry of Materials, 2018, 30, 5098-5107.	6.7	27
74	Tunable electrochemistry of gold-silver alloy nanoshells. Nano Research, 2018, 11, 6336-6345.	10.4	10
75	Toward integrated detection and graphene-based removal of contaminants in a lab-on-a-chip platform. Nano Research, 2017, 10, 2296-2310.	10.4	26
76	Paper strip-embedded graphene quantum dots: a screening device with a smartphone readout. Scientific Reports, 2017, 7, 976.	3.3	63
77	Production of biofunctionalized MoS ₂ flakes with rationally modified lysozyme: a biocompatible 2D hybrid material. 2D Materials, 2017, 4, 035007.	4.4	19
78	Nanocellulose in Sensing and Biosensing. Chemistry of Materials, 2017, 29, 5426-5446.	6.7	308
79	Rapid on-chip apoptosis assay on human carcinoma cells based on annexin-V/quantum dot probes. Biosensors and Bioelectronics, 2017, 94, 408-414.	10.1	14
80	Graphene-encapsulated materials: Synthesis, applications and trends. Progress in Materials Science, 2017, 86, 1-24.	32.8	71
81	Nanomaterials connected to antibodies and molecularly imprinted polymers as bio/receptors for bio/sensor applications. Applied Materials Today, 2017, 9, 387-401.	4.3	61
82	Straightforward Immunosensing Platform Based on Graphene Oxideâ€Decorated Nanopaper: A Highly Sensitive and Fast Biosensing Approach. Advanced Functional Materials, 2017, 27, 1702741.	14.9	66
83	Graphene Oxide–Poly(dimethylsiloxane)-Based Lab-on-a-Chip Platform for Heavy-Metals Preconcentration and Electrochemical Detection. ACS Applied Materials & Interfaces, 2017, 9, 44766-44775.	8.0	53
84	Magnetic nanoparticle-molecular imprinted polymer: A new impedimetric sensor for tributyltin detection. Electrochemistry Communications, 2017, 82, 6-11.	4.7	37
85	Mobile phone-based biosensing: An emerging "diagnostic and communication―technology. Biosensors and Bioelectronics, 2017, 92, 549-562.	10.1	214
86	Electrochemically reduced graphene and iridium oxide nanoparticles for inhibition-based angiotensin-converting enzyme inhibitor detection. Biosensors and Bioelectronics, 2017, 88, 122-129.	10.1	43
87	Graphene-based hybrid for enantioselective sensing applications. Biosensors and Bioelectronics, 2017, 87, 410-416.	10.1	62
88	Biosensors for plant pathogen detection. Biosensors and Bioelectronics, 2017, 93, 72-86.	10.1	201
89	Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications. Biosensors and Bioelectronics, 2017, 89, 886-898.	10.1	165
90	Grapheneâ€Based Biosensors: Going Simple. Advanced Materials, 2017, 29, 1604905.	21.0	163

#	Article	IF	Citations
91	Nanomaterials-Based Platforms for Environmental Monitoring. Comprehensive Analytical Chemistry, 2017, , 207-236.	1.3	4
92	Recent Trends in Nanomaterials Integration into Simple Biosensing Platforms. , 2017, , 389-406.		0
93	Enhanced detection of quantum dots labeled protein by simultaneous bismuth electrodeposition into microfluidic channel. Electrophoresis, 2016, 37, 432-437.	2.4	23
94	Magnetic Bead/Gold Nanoparticle Double-Labeled Primers for Electrochemical Detection of Isothermal Amplified < i>Leishmania < /i>DNA. Small, 2016, 12, 205-213.	10.0	70
95	Control of Electronâ€transfer in Immunonanosensors by Using Polyclonal and Monoclonal Antibodies. Electroanalysis, 2016, 28, 1795-1802.	2.9	4
96	Nanobiosensors in diagnostics. Nanobiomedicine, 2016, 3, 184954351666357.	5.7	63
97	Molecularly Imprinted Polymer-Decorated Magnetite Nanoparticles for Selective Sulfonamide Detection. Analytical Chemistry, 2016, 88, 3578-3584.	6.5	137
98	Ferrocene-functionalized graphene electrode for biosensing applications. Analytica Chimica Acta, 2016, 926, 28-35.	5.4	50
99	Emerging Nanomaterials for Analytical Detection. Comprehensive Analytical Chemistry, 2016, 74, 195-246.	1.3	10
100	High-performance sensor based on copper oxide nanoparticles for dual detection of phenolic compounds and a pesticide. Electrochemistry Communications, 2016, 71, 33-37.	4.7	42
101	Bio(Sensing) devices based on ferrocene–functionalized graphene and carbon nanotubes. Carbon, 2016, 108, 481-514.	10.3	118
102	Paper-based sensors and assays: a success of the engineering design and the convergence of knowledge areas. Lab on A Chip, 2016, 16, 3150-3176.	6.0	192
103	Graphene-based Janus micromotors for the dynamic removal of pollutants. Journal of Materials Chemistry A, 2016, 4, 3371-3378.	10.3	112
104	Electrocatalytic Detection: Magnetic Bead/Gold Nanoparticle Double-Labeled Primers for Electrochemical Detection of Isothermal Amplified <i>Leishmania</i> DNA (Small 2/2016). Small, 2016, 12, 204-204.	10.0	2
105	Modulation of population density and size of silver nanoparticles embedded in bacterial cellulose via ammonia exposure: visual detection of volatile compounds in a piece of plasmonic nanopaper. Nanoscale, 2016, 8, 7984-7991.	5.6	62
106	Water Activated Graphene Oxide Transfer Using Wax Printed Membranes for Fast Patterning of a Touch Sensitive Device. ACS Nano, 2016, 10, 853-860.	14.6	27
107	Nanochannels for electrical biosensing. TrAC - Trends in Analytical Chemistry, 2016, 79, 134-150.	11.4	42
108	Detection of parathyroid hormone-like hormone in cancer cell cultures by gold nanoparticle-based lateral flow immunoassays. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 53-61.	3.3	27

#	Article	IF	Citations
109	Microfluidic platform for environmental contaminants sensing and degradation based on boron-doped diamond electrodes. Biosensors and Bioelectronics, 2016, 75, 365-374.	10.1	71
110	Magnetic Enzymatic Platform for Organophosphate Pesticide Detection Using Boron-doped Diamond Electrodes. Analytical Sciences, 2015, 31, 1061-1068.	1.6	14
111	Bismuth nanoparticles integration into heavy metal electrochemical stripping sensor. Electrophoresis, 2015, 36, 1872-1879.	2.4	35
112	Onâ€theâ€6pot Immobilization of Quantum Dots, Graphene Oxide, and Proteins via Hydrophobins. Advanced Functional Materials, 2015, 25, 6084-6092.	14.9	28
113	Hybrid Self-Assembled Materials Constituted by Ferromagnetic Nanoparticles and Tannic Acid: a Theoretical and Experimental Investigation. Journal of the Brazilian Chemical Society, 2015, , .	0.6	13
114	Nanoparticle-based lateral flow biosensors. Biosensors and Bioelectronics, 2015, 73, 47-63.	10.1	472
115	Annexin-V/quantum dot probes for multimodal apoptosis monitoring in living cells: improving bioanalysis using electrochemistry. Nanoscale, 2015, 7, 4097-4104.	5.6	17
116	Photoluminescent Lateral-Flow Immunoassay Revealed by Graphene Oxide: Highly Sensitive Paper-Based Pathogen Detection. Analytical Chemistry, 2015, 87, 8573-8577.	6.5	155
117	An iridium oxide nanoparticle and polythionine thin film based platform for sensitive Leishmania DNA detection. Journal of Materials Chemistry B, 2015, 3, 5166-5171.	5.8	29
118	Nanopaper as an Optical Sensing Platform. ACS Nano, 2015, 9, 7296-7305.	14.6	204
119	Microfluidic Electrochemical Biosensors: Fabrication and Applications. , 2015, , 141-160.		4
120	Nanoparticle/Nanochannels-Based Electrochemical Biosensors. Nanoscience and Technology, 2015, , 205-223.	1.5	1
121	Label-Free Impedimetric Aptasensor for Ochratoxin-A Detection Using Iridium Oxide Nanoparticles. Analytical Chemistry, 2015, 87, 5167-5172.	6.5	208
122	In Situ Production of Biofunctionalized Few‣ayer Defectâ€Free Microsheets of Graphene. Advanced Functional Materials, 2015, 25, 2771-2779.	14.9	63
123	Eco-friendly electrochemical lab-on-paper for heavy metal detection. Analytical and Bioanalytical Chemistry, 2015, 407, 8445-8449.	3.7	70
124	Micro and nanomotors in diagnostics. Advanced Drug Delivery Reviews, 2015, 95, 104-116.	13.7	125
125	A DNA Aptasensor for Electrochemical Detection of Vascular Endothelial Growth Factor. Journal of Nanoscience and Nanotechnology, 2015, 15, 3411-3416.	0.9	35
126	Triple lines gold nanoparticle-based lateral flow assay for enhanced and simultaneous detection of Leishmania DNA and endogenous control. Nano Research, 2015, 8, 3704-3714.	10.4	66

#	Article	IF	Citations
127	Graphene Quantum Dots-based Photoluminescent Sensor: A Multifunctional Composite for Pesticide Detection. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20272-20279.	8.0	121
128	Protein and DNA Electrochemical Sensing Using Anodized Aluminum Oxide Nanochannel Arrays. Springer Series in Materials Science, 2015, , 271-291.	0.6	4
129	Highly sensitive and rapid determination of Escherichia coli O157:H7 in minced beef and water using electrocatalytic gold nanoparticle tags. Biosensors and Bioelectronics, 2015, 67, 511-515.	10.1	80
130	Nanoparticles-based nanochannels assembled on a plastic flexible substrate for label-free immunosensing. Nano Research, 2015, 8, 1180-1188.	10.4	27
131	Antithyroid drug detection using an enzyme cascade blocking in a nanoparticleâ€based labâ€onâ€aâ€chip system. Biosensors and Bioelectronics, 2015, 67, 670-676.	10.1	39
132	Electrochemical Impedance Spectroscopy (bio)sensing through hydrogen evolution reaction induced by gold nanoparticles. Biosensors and Bioelectronics, 2015, 67, 53-58.	10.1	27
133	Lab-in-a-syringe using gold nanoparticles for rapid immunosensing of protein biomarkers. Lab on A Chip, 2015, 15, 399-405.	6.0	48
134	Alzheimer′s disease biomarkers detection in human samples by efficient capturing through porous magnetic microspheres and labelling with electrocatalytic gold nanoparticles. Biosensors and Bioelectronics, 2015, 67, 162-169.	10.1	70
135	Nanochannel array device operating through Prussian blue nanoparticles for sensitive label-free immunodetection of a cancer biomarker. Biosensors and Bioelectronics, 2015, 67, 107-114.	10.1	45
136	Medical Nanobiosensors. Nanostructure Science and Technology, 2014, , 117-143.	0.1	1
137	On-chip magneto-immunoassay for Alzheimer's biomarker electrochemical detection by using quantum dots as labels. Biosensors and Bioelectronics, 2014, 54, 279-284.	10.1	97
138	Alzheimer Disease Biomarker Detection Through Electrocatalytic Water Oxidation Induced by Iridium Oxide Nanoparticles. Electroanalysis, 2014, 26, 1287-1294.	2.9	37
139	Supramolecular interaction of dopamine with \hat{l}^2 -cyclodextrin: An experimental and theoretical electrochemical study. Journal of Electroanalytical Chemistry, 2014, 717-718, 103-109.	3.8	28
140	Extremely fast and high Pb2+ removal capacity using a nanostructured hybrid material. Journal of Materials Chemistry A, 2014, 2, 8766.	10.3	24
141	Iridium oxide nanoparticle induced dual catalytic/inhibition based detection of phenol and pesticide compounds. Journal of Materials Chemistry B, 2014, 2, 2233-2239.	5.8	45
142	Nano/Micromotors in (Bio)chemical Science Applications. Chemical Reviews, 2014, 114, 6285-6322.	47.7	465
143	An integrated phenol â€~sensoremoval' microfluidic nanostructured platform. Biosensors and Bioelectronics, 2014, 55, 355-359.	10.1	12
144	Lateral Flow Biosensors Based on Gold Nanoparticles. Comprehensive Analytical Chemistry, 2014, 66, 569-605.	1.3	6

#	Article	IF	Citations
145	Electroanalysis-Based Clinical Diagnostics. Electroanalysis, 2014, 26, 1110-1110.	2.9	2
146	An Inkjetâ€Printed Fieldâ€Effect Transistor for Labelâ€Free Biosensing. Advanced Functional Materials, 2014, 24, 6291-6302.	14.9	63
147	Micromotor Enhanced Microarray Technology for Protein Detection. Small, 2014, 10, 2542-2548.	10.0	105
148	Simple On-Plastic/Paper Inkjet-Printed Solid-State Ag/AgCl Pseudoreference Electrode. Analytical Chemistry, 2014, 86, 10531-10534.	6.5	82
149	Graphene/Silicon Heterojunction Schottky Diode for Vapors Sensing Using Impedance Spectroscopy. Small, 2014, 10, 4193-4199.	10.0	33
150	Improving sensitivity of gold nanoparticle-based lateral flow assays by using wax-printed pillars as delay barriers of microfluidics. Lab on A Chip, 2014, 14, 4406-4414.	6.0	160
151	Electrocatalytic tuning of biosensing response through electrostatic or hydrophobic enzyme–graphene oxide interactions. Biosensors and Bioelectronics, 2014, 61, 655-662.	10.1	42
152	Nanoparticles for DNA, Protein, and Cell Electrochemical Detection. , 2014, , 209-241.		0
153	Application of Nanomaterials for DNA Sensing. Nucleic Acids and Molecular Biology, 2014, , 305-332.	0.2	4
154	Nanostructured CaCO ₃ â€poly(ethyleneimine) microparticles for phenol sensing in fluidic microsystem. Electrophoresis, 2013, 34, 2011-2016.	2.4	14
155	Nanomaterials for bio-functionalized electrodes: recent trends. Journal of Materials Chemistry B, 2013, 1, 4878.	5.8	302
156	Paperâ€Based Electrodes for Nanoparticles Detection. Particle and Particle Systems Characterization, 2013, 30, 662-666.	2.3	18
157	Design, Preparation, and Evaluation of a Fixed-Orientation Antibody/Gold-Nanoparticle Conjugate as an Immunosensing Label. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10753-10759.	8.0	89
158	All-Integrated and Highly Sensitive Paper Based Device with Sample Treatment Platform for Cd ²⁺ Immunodetection in Drinking/Tap Waters. Analytical Chemistry, 2013, 85, 3532-3538.	6.5	136
159	Screen-printed electrodes incorporated in a flow system for the decentralized monitoring of lead, cadmium and copper in natural and wastewater samples. International Journal of Environmental Analytical Chemistry, 2013, 93, 872-883.	3.3	4
160	Deprotonation Mechanism and Acidity Constants in Aqueous Solution of Flavonols: a Combined Experimental and Theoretical Study. Journal of Physical Chemistry B, 2013, 117, 12347-12359.	2.6	99
161	Multifunctional system based on hybrid nanostructured rod formation, for sensoremoval applications of Pb2+ as a model toxic metal. Journal of Materials Chemistry A, 2013, 1, 13532.	10.3	9
162	Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosensors and Bioelectronics, 2013, 40, 412-416.	10.1	263

#	Article	IF	Citations
163	Paper-based nanobiosensors for diagnostics. Chemical Society Reviews, 2013, 42, 450-457.	38.1	481
164	Bismuth nanoparticles for phenolic compounds biosensing application. Biosensors and Bioelectronics, 2013, 40, 57-62.	10.1	89
165	Simple paper architecture modifications lead to enhanced sensitivity in nanoparticle based lateral flow immunoassays. Lab on A Chip, 2013, 13, 386-390.	6.0	111
166	Nanoparticles Based Electroanalysis in Diagnostics Applications. Electroanalysis, 2013, 25, 15-27.	2.9	25
167	Micromotor-based lab-on-chip immunoassays. Nanoscale, 2013, 5, 1325-1331.	5.6	146
168	Assembly of Gold Nanorods for Highly Sensitive Detection of Mercury Ions. IEEE Sensors Journal, 2013, 13, 2834-2841.	4.7	12
169	High sensitive gold-nanoparticle based lateral flow Immunodevice for Cd2+ detection in drinking waters. Biosensors and Bioelectronics, 2013, 47, 190-198.	10.1	108
170	Gold nanoparticles decorated with a ferrocene derivative as a potential shift-based transducing system of interest for sensitive immunosensing. Journal of Materials Chemistry B, 2013, 1, 2951.	5.8	23
171	Ion-Directed Assembly of Gold Nanorods: A Strategy for Mercury Detection. ACS Applied Materials & Lamp; Interfaces, 2013, 5, 1084-1092.	8.0	58
172	Nanochannels for diagnostic of thrombin-related diseases in human blood. Biosensors and Bioelectronics, 2013, 40, 24-31.	10.1	80
173	Electrochemical detection of Salmonella using gold nanoparticles. Biosensors and Bioelectronics, 2013, 40, 121-126.	10.1	142
174	Casein modified gold nanoparticles for future theranostic applications. Biosensors and Bioelectronics, 2013, 40, 271-276.	10.1	25
175	Graphene Oxide as a Pathogenâ€Revealing Agent: Sensing with a Digitalâ€Like Response. Angewandte Chemie - International Edition, 2013, 52, 13779-13783.	13.8	56
176	Nano-Assembled Supramolecular Films from Chitosan-Stabilized Gold Nanoparticles and Cobalt(II) Phthalocyanine. Journal of the Brazilian Chemical Society, 2013, , .	0.6	3
177	Nanomaterials application in electrochemical detection of heavy metals. Electrochimica Acta, 2012, 84, 49-61.	5.2	321
178	Electrochemical Detection of DNA Using Nanomaterials Based Sensors. Soft and Biological Matter, 2012, , 185-201.	0.3	0
179	Controlled formation of nanostructured CaCO3–PEI microparticles with high biofunctionalizing capacity. Journal of Materials Chemistry, 2012, 22, 15326.	6.7	33
180	Medium Dependent Dual Turn-On/Turn-Off Fluorescence System for Heavy Metal Ions Sensing. Journal of Physical Chemistry C, 2012, 116, 1987-1994.	3.1	15

#	Article	IF	CITATIONS
181	Signal Enhancement in Antibody Microarrays Using Quantum Dots Nanocrystals: Application to Potential Alzheimer's Disease Biomarker Screening. Analytical Chemistry, 2012, 84, 6821-6827.	6.5	64
182	Carbon nanotubes and graphene in analytical sciences. Mikrochimica Acta, 2012, 179, 1-16.	5.0	204
183	Nanomaterials for Sensing and Destroying Pesticides. Chemical Reviews, 2012, 112, 5317-5338.	47.7	461
184	Nanochannels Preparation and Application in Biosensing. ACS Nano, 2012, 6, 7556-7583.	14.6	184
185	Cancer detection using nanoparticle-based sensors. Chemical Society Reviews, 2012, 41, 2606-2622.	38.1	320
186	Superhydrophobic Alkanethiol-Coated Microsubmarines for Effective Removal of Oil. ACS Nano, 2012, 6, 4445-4451.	14.6	371
187	Detection of Circulating Cancer Cells Using Electrocatalytic Gold Nanoparticles. Small, 2012, 8, 3605-3612.	10.0	57
188	Nanomaterials-Based (Bio)Sensing Systems for Safety and Security Applications. NATO Science for Peace and Security Series A: Chemistry and Biology, 2012, , 43-61.	0.5	0
189	Nanomaterials and lab-on-a-chip technologies. Lab on A Chip, 2012, 12, 1932.	6.0	142
190	Assembly of gold nanorods for highly sensitive detection of heavy metals. , 2012, , .		0
191	Bacterial Isolation by Lectin-Modified Microengines. Nano Letters, 2012, 12, 396-401.	9.1	300
191	Bacterial Isolation by Lectin-Modified Microengines. Nano Letters, 2012, 12, 396-401. Rapid and highly sensitive detection of mercury ions using a fluorescence-based paper test strip with an N-alkylaminopyrazole ligand as a receptor. Journal of Materials Chemistry, 2012, 22, 5978.	9.1	300
	Rapid and highly sensitive detection of mercury ions using a fluorescence-based paper test strip with		
192	Rapid and highly sensitive detection of mercury ions using a fluorescence-based paper test strip with an N-alkylaminopyrazole ligand as a receptor. Journal of Materials Chemistry, 2012, 22, 5978.		47
192 193	Rapid and highly sensitive detection of mercury ions using a fluorescence-based paper test strip with an N-alkylaminopyrazole ligand as a receptor. Journal of Materials Chemistry, 2012, 22, 5978. The Use of Quantum Dots for Immunochemistry Applications., 2012, 906, 185-192. On-chip electrochemical detection of CdS quantum dots using normal and multiple recycling flow	6.7	6
192 193 194	Rapid and highly sensitive detection of mercury ions using a fluorescence-based paper test strip with an N-alkylaminopyrazole ligand as a receptor. Journal of Materials Chemistry, 2012, 22, 5978. The Use of Quantum Dots for Immunochemistry Applications. , 2012, 906, 185-192. On-chip electrochemical detection of CdS quantum dots using normal and multiple recycling flow through modes. Lab on A Chip, 2012, 12, 2000. Bimetallic nanowires as electrocatalysts for nonenzymatic real-time impedancimetric detection of	6.7	47 6 27
192 193 194	Rapid and highly sensitive detection of mercury ions using a fluorescence-based paper test strip with an N-alkylaminopyrazole ligand as a receptor. Journal of Materials Chemistry, 2012, 22, 5978. The Use of Quantum Dots for Immunochemistry Applications., 2012, 906, 185-192. On-chip electrochemical detection of CdS quantum dots using normal and multiple recycling flow through modes. Lab on A Chip, 2012, 12, 2000. Bimetallic nanowires as electrocatalysts for nonenzymatic real-time impedancimetric detection of glucose. Chemical Communications, 2012, 48, 1686-1688.	6.0	47 6 27 64

#	Article	IF	Citations
199	Nanomaterials Based Electrochemical Sensing Applications for Safety and Security. Electroanalysis, 2012, 24, 459-469.	2.9	62
200	Recent Trends in Macro-, Micro-, and Nanomaterial-Based Tools and Strategies for Heavy-Metal Detection. Chemical Reviews, 2011, 111, 3433-3458.	47.7	1,184
201	Enhanced electrochemical detection of heavy metals at heated graphite nanoparticle-based screen-printed electrodes. Journal of Materials Chemistry, 2011, 21, 4326.	6.7	122
202	Variable behaviour of flexible N,O-mixed pyrazole ligand towards Zn(ii), Cd(ii) and Hg(ii) ions. Synthesis, crystal structure and fluorescent properties. CrystEngComm, 2011, 13, 6457.	2.6	25
203	Nanomaterials based biosensors for food analysis applications. Trends in Food Science and Technology, 2011, 22, 625-639.	15.1	216
204	Electrochemical Investigation of Cellular Uptake of Quantum Dots Decorated with a Proline-Rich Cell Penetrating Peptide. Bioconjugate Chemistry, 2011, 22, 180-185.	3.6	13
205	Nanoparticles for the development of improved (bio)sensing systems. Analytical and Bioanalytical Chemistry, 2011, 399, 1577-1590.	3.7	86
206	A Nanochannel/Nanoparticleâ€Based Filtering and Sensing Platform for Direct Detection of a Cancer Biomarker in Blood. Small, 2011, 7, 675-682.	10.0	136
207	Magnetic Nanoparticles Modified with Carbon Nanotubes for Electrocatalytic Magnetoswitchable Biosensing Applications. Advanced Functional Materials, 2011, 21, 255-260.	14.9	61
208	Magnetic and electrokinetic manipulations on a microchip device for beadâ€based immunosensing applications. Electrophoresis, 2011, 32, 861-869.	2.4	17
209	Study on the Supramolecular Interaction of Dopamine with Carbon Nanotubes and \hat{l}^2 -Cyclodextrin Immovilized over a Carbon Paste Electrode. ECS Transactions, 2011, 36, 471-481.	0.5	3
210	Supramolecular Systems Construction for the Selective Quantitative Determination of Dopamine in the Presence of Ascorbic Acid. ECS Transactions, 2011, 36, 385-392.	0.5	1
211	Electrochemical Study of the Formation of Surface Inclusion Complex of Ascorbic Acid with Immovilized \hat{l}^2 -Ciclodextrin and Carbon Nanotubes over a Carbon Paste Electrode. ECS Transactions, 2011, 36, 431-438.	0.5	1
212	Gold nanoparticle-based electrochemical magnetoimmunosensor for rapid detection of anti-hepatitis B virus antibodies in human serum. Biosensors and Bioelectronics, 2010, 26, 1710-1714.	10.1	89
213	Use of Sequential Injection Analysis to construct a potentiometric electronic tongue: Application to the multidetermination of heavy metals. Sensors and Actuators B: Chemical, 2010, 146, 420-426.	7.8	47
214	Bismuth Film Combined with Screenâ€Printed Electrode as Biosensing Platform for Phenol Detection. Electroanalysis, 2010, 22, 1429-1436.	2.9	31
215	Label-free voltammetric immunosensor using a nanoporous membrane based platform. Electrochemistry Communications, 2010, 12, 859-863.	4.7	52
216	Electrochemical quantification of gold nanoparticles based on their catalytic properties toward hydrogen formation: Application in magnetoimmunoassays. Electrochemistry Communications, 2010, 12, 1501-1504.	4.7	39

#	Article	IF	Citations
217	Nanoparticles-based strategies for DNA, protein and cell sensors. Biosensors and Bioelectronics, 2010, 26, 1164-1177.	10.1	131
218	Aptamers based electrochemical biosensor for protein detection using carbon nanotubes platforms. Biosensors and Bioelectronics, 2010, 26, 1715-1718.	10.1	92
219	Enzyme entrapment by \hat{I}^2 -cyclodextrin electropolymerization onto a carbon nanotubes-modified screen-printed electrode. Biosensors and Bioelectronics, 2010, 26, 1768-1773.	10.1	52
220	Immunosensing using nanoparticles. Materials Today, 2010, 13, 24-34.	14.2	131
221	Stable and sensitive flow-through monitoring of phenol using a carbon nanotube based screen printed biosensor. Nanotechnology, 2010, 21, 245502.	2.6	15
222	Enhanced Gold Nanoparticle Based ELISA for a Breast Cancer Biomarker. Analytical Chemistry, 2010, 82, 1151-1156.	6.5	345
223	Aminopyrazole-Based Ligand Induces Gold Nanoparticle Formation and Remains Available for Heavy Metal Ions Sensing. A Simple "Mix and Detect―Approach. Langmuir, 2010, 26, 10165-10170.	3.5	39
224	Surface Characterizations of Mercury-Based Electrodes with the Resulting Micro and Nano Amalgam Wires and Spheres Formations May Reveal Both Gained Sensitivity and Faced Nonstability in Heavy Metal Detection. Journal of Physical Chemistry C, 2010, 114, 9049-9055.	3.1	38
225	Compact microcubic structures platform based on self-assembly Prussian blue nanoparticles with highly tuneable conductivity. Physical Chemistry Chemical Physics, 2010, 12, 15505.	2.8	13
226	Electrochemical detection of proteins using nanoparticles: applications to diagnostics. Expert Opinion on Medical Diagnostics, 2010, 4, 21-37.	1.6	43
227	Structural characterization by confocal laser scanning microscopy and electrochemical study of multi-walled carbon nanotube tyrosinase matrix for phenol detection. Analyst, The, 2010, 135, 1918.	3.5	25
228	Direct electrochemical stripping detection of cystic-fibrosis-related DNA linked through cadmium sulfide quantum dots. Nanotechnology, 2009, 20, 055101.	2.6	62
229	Use of Sequential Injection Analysis to construct a Potentiometric Electronic Tongue: Application to the Multidetermination of Heavy Metals. , 2009, , .		1
230	Permeability Improvement of Electropolymerized Polypyrrole Films in Water Using Magnetic Hydrophilic Microbeads. Electroanalysis, 2009, 21, 887-890.	2.9	1
231	ICP-MS: a powerful technique for quantitative determination of gold nanoparticles without previous dissolving. Journal of Nanoparticle Research, 2009, 11, 2003-2011.	1.9	102
232	Controlling the electrochemical deposition of silver onto gold nanoparticles: Reducing interferences and increasing the sensitivity of magnetoimmuno assays. Biosensors and Bioelectronics, 2009, 24, 2475-2482.	10.1	67
233	Improvement of the electrochemical detection of catechol by the use of a carbon nanotube based biosensor. Analyst, The, 2009, 134, 60-64.	3.5	97
234	Rapid Identification and Quantification of Tumor Cells Using an Electrocatalytic Method Based on Gold Nanoparticles. Analytical Chemistry, 2009, 81, 10268-10274.	6.5	100

#	Article	IF	CITATIONS
235	Lab-on-a-chip for ultrasensitive detection of carbofuran by enzymatic inhibition with replacement of enzyme using magnetic beads. Lab on A Chip, 2009, 9, 213-218.	6.0	58
236	Electrochemical Immunosensing Using Micro and Nanoparticles. Methods in Molecular Biology, 2009, 504, 145-155.	0.9	4
237	Electrochemical Detection of DNA Hybridization Using Micro and Nanoparticles. Methods in Molecular Biology, 2009, 504, 127-143.	0.9	8
238	Multivariate Calibration Model for a Voltammetric Electronic Tongue Based on a Multiple Output Wavelet Neural Network. Studies in Computational Intelligence, 2009, , 137-167.	0.9	1
239	Silver, gold and the corresponding core shell nanoparticles: synthesis and characterization. Journal of Nanoparticle Research, 2008, 10, 97-106.	1.9	37
240	The usage of a bismuth film electrode as transducer in glucose biosensing. Mikrochimica Acta, 2008, 160, 269-273.	5.0	28
241	A Carbon Nanotube PVC Based Matrix Modified with Glutaraldehyde Suitable for Biosensor Applications. Electroanalysis, 2008, 20, 603-610.	2.9	25
242	Enhanced host–guest electrochemical recognition of dopamine using cyclodextrin in the presence of carbon nanotubes. Carbon, 2008, 46, 898-906.	10.3	146
243	Sensitive and stable monitoring of lead and cadmium in seawater using screen-printed electrode and electrochemical stripping analysis. Analytica Chimica Acta, 2008, 627, 219-224.	5.4	98
244	Electrochemical analysis with nanoparticle-based biosystems. TrAC - Trends in Analytical Chemistry, 2008, 27, 568-584.	11.4	104
245	Electrochemical Study of Dopamine and Ascorbic Acid by Means of Supramolecular Systems. ECS Transactions, 2008, 15, 325-334.	0.5	3
246	Networked Biomedical System for Ubiquitous Health Monitoring. Mobile Information Systems, 2008, 4, 211-218.	0.6	9
247	Dopamine Detection using an Electrode Modified with Carbon Nanotubes. ECS Transactions, 2007, 3, 77-80.	0.5	1
248	Procedure 7 Determination of lead and cadmium in tap water and soils by stripping analysis using mercury-free graphite–epoxy composite electrodes. Comprehensive Analytical Chemistry, 2007, , e47-e52.	1.3	3
249	Chapter 7 Graphite-epoxy electrodes for stripping analysis. Comprehensive Analytical Chemistry, 2007, , 143-161.	1.3	8
250	Chapter 35 Microchip electrophoresis/electrochemistry systems for analysis of nitroaromatic explosives. Comprehensive Analytical Chemistry, 2007, , 873-884.	1.3	2
251	Procedure 53 DNA analysis by using gold nanoparticle as labels. Comprehensive Analytical Chemistry, 2007, , e381-e388.	1.3	0
252	Procedure 49 Analysis of nitroaromatic explosives with microchip electrophoresis using a graphite–epoxy composite detector. Comprehensive Analytical Chemistry, 2007, , e351-e355.	1.3	0

#	Article	IF	Citations
253	Carbon nanofiber vs. carbon microparticles as modifiers of glassy carbon and gold electrodes applied in electrochemical sensing of NADH. Talanta, 2007, 74, 398-404.	5.5	19
254	Detection of cadmium sulphide nanoparticles by using screen-printed electrodes and a handheld device. Nanotechnology, 2007, 18, 035502.	2.6	36
255	Chapter 38 Gold nanoparticles in DNA and protein analysis. Comprehensive Analytical Chemistry, 2007, , 941-958.	1.3	0
256	Double-Codified Gold Nanolabels for Enhanced Immunoanalysis. Analytical Chemistry, 2007, 79, 5232-5240.	6.5	354
257	Electrochemical Sensing of DNA Using Gold Nanoparticles. Electroanalysis, 2007, 19, 743-753.	2.9	194
258	Carbon Nanotube Composite as Novel Platform for Microbial Biosensor. Electroanalysis, 2007, 19, 893-898.	2.9	41
259	Nanobiomaterials in Electroanalysis. Electroanalysis, 2007, 19, 739-741.	2.9	61
260	Carbon nanotube detectors for microchip CE: Comparative study of single-wall and multiwall carbon nanotube, and graphite powder films on glassy carbon, gold, and platinum electrode surfaces. Electrophoresis, 2007, 28, 1274-1280.	2.4	62
261	Electrochemical biosensing with nanoparticles. FEBS Journal, 2007, 274, 310-316.	4.7	102
262	Electrochemical genosensors for biomedical applications based on gold nanoparticles. Biosensors and Bioelectronics, 2007, 22, 1961-1967.	10.1	143
263	Crystal and electrochemical properties of water dispersed CdS nanocrystals obtained via reverse micelles and arrested precipitation. Nanotechnology, 2006, 17, 2553-2559.	2.6	18
264	A biosensor based on graphite epoxy composite electrode for aspartame and ethanol detection. Analytica Chimica Acta, 2006, 570, 165-169.	5.4	42
265	Graphite epoxy composite electrodes modified with bacterial cells. Bioelectrochemistry, 2006, 69, 128-131.	4.6	26
266	Application of the wavelet transform coupled with artificial neural networks for quantification purposes in a voltammetric electronic tongue. Sensors and Actuators B: Chemical, 2006, 113, 487-499.	7.8	81
267	Carbon nanotube-epoxy composites for electrochemical sensing. Sensors and Actuators B: Chemical, 2006, 113, 617-622.	7.8	179
268	New materials for electrochemical sensing VII. Microfluidic chip platforms. TrAC - Trends in Analytical Chemistry, 2006, 25, 219-235.	11.4	129
269	Microchip Capillary Electrophoresis with a Single-Wall Carbon Nanotube/Gold Electrochemical Detector for Determination of Aminophenols and Neurotransmitters. Mikrochimica Acta, 2006, 152, 261-265.	5.0	55
270	Carbon Nanotubes in Analytical Sciences. Mikrochimica Acta, 2006, 152, 157-174.	5.0	245

#	Article	IF	Citations
271	Carbon Nanotubes: Exciting New Materials for Microanalysis and Sensing. Mikrochimica Acta, 2006, 152, 155-156.	5.0	31
272	Microchip Capillary Electrophoresis-Electrochemistry with Rigid Graphite-Epoxy Composite Detector. Electroanalysis, 2006, 18, 207-210.	2.9	13
273	Microchip electrophoresis with wall-jet electrochemical detector: Influence of detection potential upon resolution of solutes. Electrophoresis, 2006, 27, 5068-5072.	2.4	16
274	Integration of a glucose biosensor based on an epoxy-graphite-TTF·TCNQ-GOD biocomposite into a FIA system. Sensors and Actuators B: Chemical, 2005, 107, 742-748.	7.8	29
275	Direct voltammetric determination of gold nanoparticles using graphite-epoxy composite electrode. Electrochimica Acta, 2005, 50, 3702-3707.	5.2	97
276	New materials for electrochemical sensing V: Nanoparticles for DNA labeling. TrAC - Trends in Analytical Chemistry, 2005, 24, 341-349.	11.4	73
277	New materials for electrochemical sensing VI: Carbon nanotubes. TrAC - Trends in Analytical Chemistry, 2005, 24, 826-838.	11.4	626
278	Resistance to Surfactant and Protein Fouling Effects at Conducting Diamond Electrodes. Electroanalysis, 2005, 17, 305-311.	2.9	49
279	Stripping Voltammetry with Bismuth Modified Graphite-Epoxy Composite Electrodes. Electroanalysis, 2005, 17, 881-886.	2.9	49
280	Amino Acid Determination Using Screen-Printed Electrochemical Sensors. Mikrochimica Acta, 2005, 150, 233-238.	5.0	38
281	Glucose Biosensor Based on Carbon Nanotube Epoxy Composites. Journal of Nanoscience and Nanotechnology, 2005, 5, 1694-1698.	0.9	62
282	Toward an ICPMS-Linked DNA Assay Based on Gold Nanoparticles Immunoconnected through Peptide Sequences. Analytical Chemistry, 2005, 77, 6500-6503.	6.5	66
283	Sensitive stripping voltammetry of heavy metals by using a composite sensor based on a built-in bismuth precursor. Analyst, The, 2005, 130, 971.	3.5	52
284	Data Compression for a Voltammetric Electronic Tongue Modelled with Artificial Neural Networks. Analytical Letters, 2005, 38, 2189-2206.	1.8	50
285	Magnetically Trigged Direct Electrochemical Detection of DNA Hybridization Using Au67Quantum Dot as Electrical Tracer. Langmuir, 2005, 21, 9625-9629.	3.5	133
286	Application of Graphite-Epoxy Composite Electrodes in Differential Pulse Anodic Stripping Voltammetry of Heavy Metals. Mikrochimica Acta, 2004, 147, 245.	5.0	19
287	Oil dispersion of Agl/Ag2S salts as a new electroactive material for potentiometric sensing of iodide and cyanide. Sensors and Actuators B: Chemical, 2004, 101, 57-62.	7.8	21
288	Analysis of amino acids in complex samples by using voltammetry and multivariate calibration methods. Analytica Chimica Acta, 2004, 507, 247-253.	5.4	40

#	Article	IF	Citations
289	PCR-Genosensor Rapid Test for DetectingSalmonella. Electroanalysis, 2003, 15, 1815-1823.	2.9	36
290	Composite and Biocomposite Materials for Electrochemical Sensing. ChemInform, 2003, 34, no.	0.0	1
291	Graphite-epoxy composite as an alternative material to design mercury free working electrodes for stripping voltammetry. Electrochimica Acta, 2003, 48, 2599-2605.	5. 2	37
292	Particle-based detection of DNA hybridization using electrochemical stripping measurements of an iron tracer. Analytica Chimica Acta, 2003, 482, 149-155.	5.4	82
293	Rapid electrochemical genosensor assay using a streptavidin carbon-polymer biocomposite electrode. Biosensors and Bioelectronics, 2003, 19, 165-175.	10.1	49
294	Graphite-epoxy composites as a new transducing material for electrochemical genosensing. Biosensors and Bioelectronics, 2003, 19, 473-484.	10.1	59
295	Determination of Toxic Substances Based on Enzyme Inhibition. Part I. Electrochemical Biosensors for the Determination of Pesticides Using Batch Procedures. Critical Reviews in Analytical Chemistry, 2003, 33, 89-126.	3.5	72
296	"Electroactive Beads―for Ultrasensitive DNA Detection. Langmuir, 2003, 19, 989-991.	3.5	144
297	Determination of Toxic Substances Based on Enzyme Inhibition. Part II. Electrochemical Biosensors for the Determination of Pesticides Using Flow Systems. Critical Reviews in Analytical Chemistry, 2003, 33, 127-143.	3.5	49
298	Electrochemical Coding Technology for Simultaneous Detection of Multiple DNA Targets. Journal of the American Chemical Society, 2003, 125, 3214-3215.	13.7	620
299	Chapter 8 Composite and biocomposite materials for electrochemical sensing. Comprehensive Analytical Chemistry, 2003, , 377-411.	1.3	3
300	Mercury-Free PSA of Heavy Metals Using Graphite-Epoxy Composite Electrodes. Electroanalysis, 2002, 14, 1281-1287.	2.9	21
301	Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags. Electrochemistry Communications, 2002, 4, 722-726.	4.7	166
302	Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochemistry Communications, 2002, 4, 743-746.	4.7	1,055
303	New materials for electrochemical sensing IV. Molecular imprinted polymers. TrAC - Trends in Analytical Chemistry, 2002, 21, 717-725.	11.4	122
304	Dot-blot amperometric genosensor for detecting a novel determinant of \hat{l}^2 -lactamase resistance in Staphylococcus aureus. Analyst, The, 2001, 126, 1551-1557.	3.5	36
305	New materials for electrochemical sensing III. Beads. TrAC - Trends in Analytical Chemistry, 2001, 20, 102-110.	11.4	65
306	Thick-film biosensors for pesticides produced by screen-printing of graphite–epoxy composite and biocomposite pastes. Sensors and Actuators B: Chemical, 2001, 79, 48-57.	7.8	33

#	Article	IF	CITATIONS
307	Classical dot–blot format implemented as an amperometric hybridisation genosensor. Biosensors and Bioelectronics, 2001, 16, 1133-1142.	10.1	38
308	Pesticide determination in tap water and juice samples using disposable amperometric biosensors made using thick-film technology. Analytica Chimica Acta, 2001, 442, 35-44.	5.4	87
309	Potentiometric characterisation of acid rains using corrected linear plots. Analytica Chimica Acta, 2000, 405, 173-178.	5.4	7
310	Configurations used in the design of screen-printed enzymatic biosensors. A review. Sensors and Actuators B: Chemical, 2000, 69, 153-163.	7.8	286
311	Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods. Biosensors and Bioelectronics, 2000, 15, 291-303.	10.1	302
312	Comparison of chromium speciation by CZE and ion exchange followed by AAS. Fresenius' Journal of Analytical Chemistry, 2000, 367, 12-16.	1.5	12
313	Determination of Pb and Cu by Anodic Stripping Voltammetry Using Glassy Carbon Electrodes Modified with Mercury or Mercury-Nafion Films. Mikrochimica Acta, 2000, 135, 29-33.	5.0	16
314	Consolidated biocomposite membrane technology for production of potentiometric biosensors. Sensors and Actuators B: Chemical, 1999, 60, 97-105.	7.8	5
315	A potentiometric biosensor for d-amygdalin based on a consolidated biocomposite membrane. Analytica Chimica Acta, 1999, 391, 65-72.	5.4	8
316	A Practical Approach to Potentiometric Biosensors Based on Consolidated Composites: Construction and Evaluation of a D-Amygdalin Biosensor. The Chemical Educator, 1999, 4, 137-140.	0.0	0
317	Stripping Potentiometry of Lead, Cadmium and Copper at a Nafion Coated Glassy Carbon Electrode with Encapsulated Mercury Acetate. Analytical Letters, 1997, 30, 1223-1234.	1.8	6
318	Characterization of di(2-ethylhexyl)thiophosphoric acid by potentiometric titration and capillary zone electrophoresis. Fresenius' Journal of Analytical Chemistry, 1997, 358, 489-492.	1.5	2
319	Determination of chloride complex of Au(III) by capillary zone electrophoresis with direct UV detection. Journal of Chromatography A, 1995, 718, 227-232.	3.7	27
320	Potentiometric characterization of weak acids by multiple sample addition II. The effect of chemical interferences and the practical performance of linearization methods. Talanta, 1995, 42, 1433-1445.	5.5	3
321	Potentiometric characterization of weak acids by multiple sample addition—I. Linear equations and intrinsic performance of the method. Talanta, 1994, 41, 2033-2042.	5.5	6
322	Au-solid-state potentiometric sensor for iodide based on the oil dispersion of mixed AgI/Ag/sub $2/S$ salts. , 0 , , .		0
323	Quantum Dot Applications in Biomolecule Assays. , 0, , 333-354.		0
324	Nanoparticles and Inductively Coupled Plasma Mass Spectroscopy–Based Biosensing. , 0, , 355-376.		0

Arben Merkoçi

#	Article	IF	CITATIONS
325	Improved Electrochemistry of Biomolecules Using Nanomaterials. , 0, , 97-135.		O
326	Gold Nanoparticles: A Versatile Label for Affinity Electrochemical Biosensors., 0,, 177-197.		9
327	Quantum Dots for the Development of Optical Biosensors Based on Fluorescence. , 0, , 199-245.		6