
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8371679/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Trends in Macro-, Micro-, and Nanomaterial-Based Tools and Strategies for Heavy-Metal Detection. Chemical Reviews, 2011, 111, 3433-3458.	47.7	1,184
2	Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochemistry Communications, 2002, 4, 743-746.	4.7	1,055
3	New materials for electrochemical sensing VI: Carbon nanotubes. TrAC - Trends in Analytical Chemistry, 2005, 24, 826-838.	11.4	626
4	Electrochemical Coding Technology for Simultaneous Detection of Multiple DNA Targets. Journal of the American Chemical Society, 2003, 125, 3214-3215.	13.7	620
5	Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Advanced Materials, 2019, 31, e1806739.	21.0	540
6	Paper-based nanobiosensors for diagnostics. Chemical Society Reviews, 2013, 42, 450-457.	38.1	481
7	Nanoparticle-based lateral flow biosensors. Biosensors and Bioelectronics, 2015, 73, 47-63.	10.1	472
8	Nano/Micromotors in (Bio)chemical Science Applications. Chemical Reviews, 2014, 114, 6285-6322.	47.7	465
9	Nanomaterials for Sensing and Destroying Pesticides. Chemical Reviews, 2012, 112, 5317-5338.	47.7	461
10	Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS Nano, 2020, 14, 6383-6406.	14.6	455
11	Graphene Oxide as an Optical Biosensing Platform. Advanced Materials, 2012, 24, 3298-3308.	21.0	444
12	Superhydrophobic Alkanethiol-Coated Microsubmarines for Effective Removal of Oil. ACS Nano, 2012, 6, 4445-4451.	14.6	371
13	Double-Codified Gold Nanolabels for Enhanced Immunoanalysis. Analytical Chemistry, 2007, 79, 5232-5240.	6.5	354
14	Enhanced Gold Nanoparticle Based ELISA for a Breast Cancer Biomarker. Analytical Chemistry, 2010, 82, 1151-1156.	6.5	345
15	Nanomaterials application in electrochemical detection of heavy metals. Electrochimica Acta, 2012, 84, 49-61.	5.2	321
16	Cancer detection using nanoparticle-based sensors. Chemical Society Reviews, 2012, 41, 2606-2622.	38.1	320
17	Nanocellulose in Sensing and Biosensing. Chemistry of Materials, 2017, 29, 5426-5446.	6.7	308
18	Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods. Biosensors and Bioelectronics. 2000. 15. 291-303.	10.1	302

#	Article	IF	CITATIONS
19	Nanomaterials for bio-functionalized electrodes: recent trends. Journal of Materials Chemistry B, 2013, 1, 4878.	5.8	302
20	Bacterial Isolation by Lectin-Modified Microengines. Nano Letters, 2012, 12, 396-401.	9.1	300
21	Configurations used in the design of screen-printed enzymatic biosensors. A review. Sensors and Actuators B: Chemical, 2000, 69, 153-163.	7.8	286
22	Nanomaterial-based devices for point-of-care diagnostic applications. Chemical Society Reviews, 2018, 47, 4697-4709.	38.1	276
23	Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosensors and Bioelectronics, 2013, 40, 412-416.	10.1	263
24	Carbon Nanotubes in Analytical Sciences. Mikrochimica Acta, 2006, 152, 157-174.	5.0	245
25	Nanomaterials for Nanotheranostics: Tuning Their Properties According to Disease Needs. ACS Nano, 2020, 14, 2585-2627.	14.6	239
26	Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nature Protocols, 2020, 15, 3788-3816.	12.0	235
27	Nanomaterials based biosensors for food analysis applications. Trends in Food Science and Technology, 2011, 22, 625-639.	15.1	216
28	Mobile phone-based biosensing: An emerging "diagnostic and communication―technology. Biosensors and Bioelectronics, 2017, 92, 549-562.	10.1	214
29	Label-Free Impedimetric Aptasensor for Ochratoxin-A Detection Using Iridium Oxide Nanoparticles. Analytical Chemistry, 2015, 87, 5167-5172.	6.5	208
30	Carbon nanotubes and graphene in analytical sciences. Mikrochimica Acta, 2012, 179, 1-16.	5.0	204
31	Nanopaper as an Optical Sensing Platform. ACS Nano, 2015, 9, 7296-7305.	14.6	204
32	Biosensors for plant pathogen detection. Biosensors and Bioelectronics, 2017, 93, 72-86.	10.1	201
33	Electrochemical Sensing of DNA Using Gold Nanoparticles. Electroanalysis, 2007, 19, 743-753.	2.9	194
34	Paper-based sensors and assays: a success of the engineering design and the convergence of knowledge areas. Lab on A Chip, 2016, 16, 3150-3176.	6.0	192
35	Nanochannels Preparation and Application in Biosensing. ACS Nano, 2012, 6, 7556-7583.	14.6	184
36	Carbon nanotube-epoxy composites for electrochemical sensing. Sensors and Actuators B: Chemical, 2006, 113, 617-622.	7.8	179

#	Article	IF	CITATIONS
37	Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags. Electrochemistry Communications, 2002, 4, 722-726.	4.7	166
38	Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications. Biosensors and Bioelectronics, 2017, 89, 886-898.	10.1	165
39	Grapheneâ€Based Biosensors: Going Simple. Advanced Materials, 2017, 29, 1604905.	21.0	163
40	Improving sensitivity of gold nanoparticle-based lateral flow assays by using wax-printed pillars as delay barriers of microfluidics. Lab on A Chip, 2014, 14, 4406-4414.	6.0	160
41	Photoluminescent Lateral-Flow Immunoassay Revealed by Graphene Oxide: Highly Sensitive Paper-Based Pathogen Detection. Analytical Chemistry, 2015, 87, 8573-8577.	6.5	155
42	Enhanced host–guest electrochemical recognition of dopamine using cyclodextrin in the presence of carbon nanotubes. Carbon, 2008, 46, 898-906.	10.3	146
43	Micromotor-based lab-on-chip immunoassays. Nanoscale, 2013, 5, 1325-1331.	5.6	146
44	"Electroactive Beads―for Ultrasensitive DNA Detection. Langmuir, 2003, 19, 989-991.	3.5	144
45	Electrochemical genosensors for biomedical applications based on gold nanoparticles. Biosensors and Bioelectronics, 2007, 22, 1961-1967.	10.1	143
46	Nanomaterials and lab-on-a-chip technologies. Lab on A Chip, 2012, 12, 1932.	6.0	142
47	Electrochemical detection of Salmonella using gold nanoparticles. Biosensors and Bioelectronics, 2013, 40, 121-126.	10.1	142
48	Molecularly Imprinted Polymer-Decorated Magnetite Nanoparticles for Selective Sulfonamide Detection. Analytical Chemistry, 2016, 88, 3578-3584.	6.5	137
49	A Nanochannel/Nanoparticleâ€Based Filtering and Sensing Platform for Direct Detection of a Cancer Biomarker in Blood. Small, 2011, 7, 675-682.	10.0	136
50	All-Integrated and Highly Sensitive Paper Based Device with Sample Treatment Platform for Cd ²⁺ Immunodetection in Drinking/Tap Waters. Analytical Chemistry, 2013, 85, 3532-3538.	6.5	136
51	Magnetically Trigged Direct Electrochemical Detection of DNA Hybridization Using Au67Quantum Dot as Electrical Tracer. Langmuir, 2005, 21, 9625-9629.	3.5	133
52	Nanoparticles-based strategies for DNA, protein and cell sensors. Biosensors and Bioelectronics, 2010, 26, 1164-1177.	10.1	131
53	Immunosensing using nanoparticles. Materials Today, 2010, 13, 24-34.	14.2	131
54	New materials for electrochemical sensing VII. Microfluidic chip platforms. TrAC - Trends in Analytical Chemistry, 2006, 25, 219-235.	11.4	129

#	Article	IF	CITATIONS
55	Rapid and Efficient Detection of the SARS-CoV-2 Spike Protein Using an Electrochemical Aptamer-Based Sensor. ACS Sensors, 2021, 6, 3093-3101.	7.8	129
56	Micro and nanomotors in diagnostics. Advanced Drug Delivery Reviews, 2015, 95, 104-116.	13.7	125
57	New materials for electrochemical sensing IV. Molecular imprinted polymers. TrAC - Trends in Analytical Chemistry, 2002, 21, 717-725.	11.4	122
58	Enhanced electrochemical detection of heavy metals at heated graphite nanoparticle-based screen-printed electrodes. Journal of Materials Chemistry, 2011, 21, 4326.	6.7	122
59	Graphene Quantum Dots-based Photoluminescent Sensor: A Multifunctional Composite for Pesticide Detection. ACS Applied Materials & amp; Interfaces, 2015, 7, 20272-20279.	8.0	121
60	Bio(Sensing) devices based on ferrocene–functionalized graphene and carbon nanotubes. Carbon, 2016, 108, 481-514.	10.3	118
61	Graphene Oxide as an Optical Biosensing Platform: A Progress Report. Advanced Materials, 2019, 31, e1805043.	21.0	117
62	Graphene-based Janus micromotors for the dynamic removal of pollutants. Journal of Materials Chemistry A, 2016, 4, 3371-3378.	10.3	112
63	Simple paper architecture modifications lead to enhanced sensitivity in nanoparticle based lateral flow immunoassays. Lab on A Chip, 2013, 13, 386-390.	6.0	111
64	High sensitive gold-nanoparticle based lateral flow Immunodevice for Cd2+ detection in drinking waters. Biosensors and Bioelectronics, 2013, 47, 190-198.	10.1	108
65	Micromotor Enhanced Microarray Technology for Protein Detection. Small, 2014, 10, 2542-2548.	10.0	105
66	Electrochemical analysis with nanoparticle-based biosystems. TrAC - Trends in Analytical Chemistry, 2008, 27, 568-584.	11.4	104
67	Simple Förster resonance energy transfer evidence for the ultrahigh quantum dot quenching efficiency by graphene oxide compared to other carbon structures. Carbon, 2012, 50, 2987-2993.	10.3	103
68	Electrochemical biosensing with nanoparticles. FEBS Journal, 2007, 274, 310-316.	4.7	102
69	ICP-MS: a powerful technique for quantitative determination of gold nanoparticles without previous dissolving. Journal of Nanoparticle Research, 2009, 11, 2003-2011.	1.9	102
70	Rapid Identification and Quantification of Tumor Cells Using an Electrocatalytic Method Based on Gold Nanoparticles. Analytical Chemistry, 2009, 81, 10268-10274.	6.5	100
71	Deprotonation Mechanism and Acidity Constants in Aqueous Solution of Flavonols: a Combined Experimental and Theoretical Study. Journal of Physical Chemistry B, 2013, 117, 12347-12359.	2.6	99
72	Sensitive and stable monitoring of lead and cadmium in seawater using screen-printed electrode and electrochemical stripping analysis. Analytica Chimica Acta, 2008, 627, 219-224.	5.4	98

#	Article	IF	CITATIONS
73	Direct voltammetric determination of gold nanoparticles using graphite-epoxy composite electrode. Electrochimica Acta, 2005, 50, 3702-3707.	5.2	97
74	Improvement of the electrochemical detection of catechol by the use of a carbon nanotube based biosensor. Analyst, The, 2009, 134, 60-64.	3.5	97
75	On-chip magneto-immunoassay for Alzheimer's biomarker electrochemical detection by using quantum dots as labels. Biosensors and Bioelectronics, 2014, 54, 279-284.	10.1	97
76	Simple Monitoring of Cancer Cells Using Nanoparticles. Nano Letters, 2012, 12, 4164-4171.	9.1	94
77	Aptamers based electrochemical biosensor for protein detection using carbon nanotubes platforms. Biosensors and Bioelectronics, 2010, 26, 1715-1718.	10.1	92
78	Gold nanoparticle-based electrochemical magnetoimmunosensor for rapid detection of anti-hepatitis B virus antibodies in human serum. Biosensors and Bioelectronics, 2010, 26, 1710-1714.	10.1	89
79	Design, Preparation, and Evaluation of a Fixed-Orientation Antibody/Gold-Nanoparticle Conjugate as an Immunosensing Label. ACS Applied Materials & Interfaces, 2013, 5, 10753-10759.	8.0	89
80	Bismuth nanoparticles for phenolic compounds biosensing application. Biosensors and Bioelectronics, 2013, 40, 57-62.	10.1	89
81	Pesticide determination in tap water and juice samples using disposable amperometric biosensors made using thick-film technology. Analytica Chimica Acta, 2001, 442, 35-44.	5.4	87
82	Nanoparticles for the development of improved (bio)sensing systems. Analytical and Bioanalytical Chemistry, 2011, 399, 1577-1590.	3.7	86
83	Electrochemical detection of plant virus using gold nanoparticle-modified electrodes. Analytica Chimica Acta, 2019, 1046, 123-131.	5.4	86
84	Particle-based detection of DNA hybridization using electrochemical stripping measurements of an iron tracer. Analytica Chimica Acta, 2003, 482, 149-155.	5.4	82
85	Simple On-Plastic/Paper Inkjet-Printed Solid-State Ag/AgCl Pseudoreference Electrode. Analytical Chemistry, 2014, 86, 10531-10534.	6.5	82
86	Application of the wavelet transform coupled with artificial neural networks for quantification purposes in a voltammetric electronic tongue. Sensors and Actuators B: Chemical, 2006, 113, 487-499.	7.8	81
87	Nanochannels for diagnostic of thrombin-related diseases in human blood. Biosensors and Bioelectronics, 2013, 40, 24-31.	10.1	80
88	Highly sensitive and rapid determination of Escherichia coli O157:H7 in minced beef and water using electrocatalytic gold nanoparticle tags. Biosensors and Bioelectronics, 2015, 67, 511-515.	10.1	80
89	Electrochromic Molecular Imprinting Sensor for Visual and Smartphone-Based Detections. Analytical Chemistry, 2018, 90, 5850-5856.	6.5	79
90	New materials for electrochemical sensing V: Nanoparticles for DNA labeling. TrAC - Trends in Analytical Chemistry, 2005, 24, 341-349.	11.4	73

#	Article	IF	CITATIONS
91	Determination of Toxic Substances Based on Enzyme Inhibition. Part I. Electrochemical Biosensors for the Determination of Pesticides Using Batch Procedures. Critical Reviews in Analytical Chemistry, 2003, 33, 89-126.	3.5	72
92	Microfluidic platform for environmental contaminants sensing and degradation based on boron-doped diamond electrodes. Biosensors and Bioelectronics, 2016, 75, 365-374.	10.1	71
93	Graphene-encapsulated materials: Synthesis, applications and trends. Progress in Materials Science, 2017, 86, 1-24.	32.8	71
94	Eco-friendly electrochemical lab-on-paper for heavy metal detection. Analytical and Bioanalytical Chemistry, 2015, 407, 8445-8449.	3.7	70
95	Alzheimer′s disease biomarkers detection in human samples by efficient capturing through porous magnetic microspheres and labelling with electrocatalytic gold nanoparticles. Biosensors and Bioelectronics, 2015, 67, 162-169.	10.1	70
96	Magnetic Bead/Gold Nanoparticle Double-Labeled Primers for Electrochemical Detection of Isothermal Amplified <i>Leishmania</i> DNA. Small, 2016, 12, 205-213.	10.0	70
97	Controlling the electrochemical deposition of silver onto gold nanoparticles: Reducing interferences and increasing the sensitivity of magnetoimmuno assays. Biosensors and Bioelectronics, 2009, 24, 2475-2482.	10.1	67
98	Toward an ICPMS-Linked DNA Assay Based on Gold Nanoparticles Immunoconnected through Peptide Sequences. Analytical Chemistry, 2005, 77, 6500-6503.	6.5	66
99	Triple lines gold nanoparticle-based lateral flow assay for enhanced and simultaneous detection of Leishmania DNA and endogenous control. Nano Research, 2015, 8, 3704-3714.	10.4	66
100	Straightforward Immunosensing Platform Based on Graphene Oxideâ€Decorated Nanopaper: A Highly Sensitive and Fast Biosensing Approach. Advanced Functional Materials, 2017, 27, 1702741.	14.9	66
101	New materials for electrochemical sensing III. Beads. TrAC - Trends in Analytical Chemistry, 2001, 20, 102-110.	11.4	65
102	Signal Enhancement in Antibody Microarrays Using Quantum Dots Nanocrystals: Application to Potential Alzheimer's Disease Biomarker Screening. Analytical Chemistry, 2012, 84, 6821-6827.	6.5	64
103	Bimetallic nanowires as electrocatalysts for nonenzymatic real-time impedancimetric detection of glucose. Chemical Communications, 2012, 48, 1686-1688.	4.1	64
104	Chitin Nanofiber Paper toward Optical (Bio)sensing Applications. ACS Applied Materials & Interfaces, 2020, 12, 15538-15552.	8.0	64
105	An Inkjetâ€Printed Fieldâ€Effect Transistor for Labelâ€Free Biosensing. Advanced Functional Materials, 2014, 24, 6291-6302.	14.9	63
106	In Situ Production of Biofunctionalized Few‣ayer Defectâ€Free Microsheets of Graphene. Advanced Functional Materials, 2015, 25, 2771-2779.	14.9	63
107	Nanobiosensors in diagnostics. Nanobiomedicine, 2016, 3, 184954351666357.	5.7	63
108	Paper strip-embedded graphene quantum dots: a screening device with a smartphone readout. Scientific Reports, 2017, 7, 976.	3.3	63

#	Article	IF	CITATIONS
109	Glucose Biosensor Based on Carbon Nanotube Epoxy Composites. Journal of Nanoscience and Nanotechnology, 2005, 5, 1694-1698.	0.9	62
110	Carbon nanotube detectors for microchip CE: Comparative study of single-wall and multiwall carbon nanotube, and graphite powder films on glassy carbon, gold, and platinum electrode surfaces. Electrophoresis, 2007, 28, 1274-1280.	2.4	62
111	Direct electrochemical stripping detection of cystic-fibrosis-related DNA linked through cadmium sulfide quantum dots. Nanotechnology, 2009, 20, 055101.	2.6	62
112	Nanomaterials Based Electrochemical Sensing Applications for Safety and Security. Electroanalysis, 2012, 24, 459-469.	2.9	62
113	Modulation of population density and size of silver nanoparticles embedded in bacterial cellulose via ammonia exposure: visual detection of volatile compounds in a piece of plasmonic nanopaper. Nanoscale, 2016, 8, 7984-7991.	5.6	62
114	Graphene-based hybrid for enantioselective sensing applications. Biosensors and Bioelectronics, 2017, 87, 410-416.	10.1	62
115	Nanobiomaterials in Electroanalysis. Electroanalysis, 2007, 19, 739-741.	2.9	61
116	Magnetic Nanoparticles Modified with Carbon Nanotubes for Electrocatalytic Magnetoswitchable Biosensing Applications. Advanced Functional Materials, 2011, 21, 255-260.	14.9	61
117	Nanomaterials connected to antibodies and molecularly imprinted polymers as bio/receptors for bio/sensor applications. Applied Materials Today, 2017, 9, 387-401.	4.3	61
118	Graphite-epoxy composites as a new transducing material for electrochemical genosensing. Biosensors and Bioelectronics, 2003, 19, 473-484.	10.1	59
119	Lab-on-a-chip for ultrasensitive detection of carbofuran by enzymatic inhibition with replacement of enzyme using magnetic beads. Lab on A Chip, 2009, 9, 213-218.	6.0	58
120	Ion-Directed Assembly of Gold Nanorods: A Strategy for Mercury Detection. ACS Applied Materials & Interfaces, 2013, 5, 1084-1092.	8.0	58
121	Detection of Circulating Cancer Cells Using Electrocatalytic Gold Nanoparticles. Small, 2012, 8, 3605-3612.	10.0	57
122	Graphene Oxide as a Pathogenâ€Revealing Agent: Sensing with a Digital‣ike Response. Angewandte Chemie - International Edition, 2013, 52, 13779-13783.	13.8	56
123	Microchip Capillary Electrophoresis with a Single-Wall Carbon Nanotube/Gold Electrochemical Detector for Determination of Aminophenols and Neurotransmitters. Mikrochimica Acta, 2006, 152, 261-265.	5.0	55
124	Graphene Oxide–Poly(dimethylsiloxane)-Based Lab-on-a-Chip Platform for Heavy-Metals Preconcentration and Electrochemical Detection. ACS Applied Materials & Interfaces, 2017, 9, 44766-44775.	8.0	53
125	Signal enhancement on gold nanoparticle-based lateral flow tests using cellulose nanofibers. Biosensors and Bioelectronics, 2019, 141, 111407.	10.1	53
126	Nano-lantern on paper for smartphone-based ATP detection. Biosensors and Bioelectronics, 2020, 150, 111902.	10.1	53

8

#	Article	IF	CITATIONS
127	Sensitive stripping voltammetry of heavy metals by using a composite sensor based on a built-in bismuth precursor. Analyst, The, 2005, 130, 971.	3.5	52
128	Label-free voltammetric immunosensor using a nanoporous membrane based platform. Electrochemistry Communications, 2010, 12, 859-863.	4.7	52
129	Enzyme entrapment by \hat{l}^2 -cyclodextrin electropolymerization onto a carbon nanotubes-modified screen-printed electrode. Biosensors and Bioelectronics, 2010, 26, 1768-1773.	10.1	52
130	Integrated Devices for Nonâ€Invasive Diagnostics. Advanced Functional Materials, 2021, 31, 2010388.	14.9	51
131	Data Compression for a Voltammetric Electronic Tongue Modelled with Artificial Neural Networks. Analytical Letters, 2005, 38, 2189-2206.	1.8	50
132	Ferrocene-functionalized graphene electrode for biosensing applications. Analytica Chimica Acta, 2016, 926, 28-35.	5.4	50
133	Recent advancement in biomedical applications on the surface of two-dimensional materials: from biosensing to tissue engineering. Nanoscale, 2020, 12, 19043-19067.	5.6	50
134	Lab in a Tube: Point-of-Care Detection of <i>Escherichia coli</i> . Analytical Chemistry, 2020, 92, 4209-4216.	6.5	50
135	Rapid electrochemical genosensor assay using a streptavidin carbon-polymer biocomposite electrode. Biosensors and Bioelectronics, 2003, 19, 165-175.	10.1	49
136	Determination of Toxic Substances Based on Enzyme Inhibition. Part II. Electrochemical Biosensors for the Determination of Pesticides Using Flow Systems. Critical Reviews in Analytical Chemistry, 2003, 33, 127-143.	3.5	49
137	Resistance to Surfactant and Protein Fouling Effects at Conducting Diamond Electrodes. Electroanalysis, 2005, 17, 305-311.	2.9	49
138	Stripping Voltammetry with Bismuth Modified Graphite-Epoxy Composite Electrodes. Electroanalysis, 2005, 17, 881-886.	2.9	49
139	Lab-in-a-syringe using gold nanoparticles for rapid immunosensing of protein biomarkers. Lab on A Chip, 2015, 15, 399-405.	6.0	48
140	Use of Sequential Injection Analysis to construct a potentiometric electronic tongue: Application to the multidetermination of heavy metals. Sensors and Actuators B: Chemical, 2010, 146, 420-426.	7.8	47
141	Rapid and highly sensitive detection of mercury ions using a fluorescence-based paper test strip with an N-alkylaminopyrazole ligand as a receptor. Journal of Materials Chemistry, 2012, 22, 5978.	6.7	47
142	Design and Fabrication of Printed Paperâ€Based Hybrid Microâ€Supercapacitor by using Graphene and Redoxâ€Active Electrolyte. ChemSusChem, 2018, 11, 1849-1856.	6.8	46
143	Iridium oxide nanoparticle induced dual catalytic/inhibition based detection of phenol and pesticide compounds. Journal of Materials Chemistry B, 2014, 2, 2233-2239.	5.8	45
144	Nanochannel array device operating through Prussian blue nanoparticles for sensitive label-free immunodetection of a cancer biomarker. Biosensors and Bioelectronics, 2015, 67, 107-114.	10.1	45

#	Article	IF	CITATIONS
145	Smart Chip for Visual Detection of Bacteria Using the Electrochromic Properties of Polyaniline. Analytical Chemistry, 2019, 91, 14960-14966.	6.5	44
146	Inkjet-printed electrochemically reduced graphene oxide microelectrode as a platform for HT-2 mycotoxin immunoenzymatic biosensing. Biosensors and Bioelectronics, 2020, 156, 112109.	10.1	44
147	Electrochemical detection of proteins using nanoparticles: applications to diagnostics. Expert Opinion on Medical Diagnostics, 2010, 4, 21-37.	1.6	43
148	Electrochemically reduced graphene and iridium oxide nanoparticles for inhibition-based angiotensin-converting enzyme inhibitor detection. Biosensors and Bioelectronics, 2017, 88, 122-129.	10.1	43
149	Experimental Comparison in Sensing Breast Cancer Mutations by Signal ON and Signal OFF Paper-Based Electroanalytical Strips. Analytical Chemistry, 2020, 92, 1674-1679.	6.5	43
150	Lateral flow assay modified with time-delay wax barriers as a sensitivity and signal enhancement strategy. Biosensors and Bioelectronics, 2020, 168, 112559.	10.1	43
151	Metabolomics for personalized medicine: the input of analytical chemistry from biomarker discovery to point-of-care tests. Analytical and Bioanalytical Chemistry, 2022, 414, 759-789.	3.7	43
152	A biosensor based on graphite epoxy composite electrode for aspartame and ethanol detection. Analytica Chimica Acta, 2006, 570, 165-169.	5.4	42
153	Electrocatalytic tuning of biosensing response through electrostatic or hydrophobic enzyme–graphene oxide interactions. Biosensors and Bioelectronics, 2014, 61, 655-662.	10.1	42
154	High-performance sensor based on copper oxide nanoparticles for dual detection of phenolic compounds and a pesticide. Electrochemistry Communications, 2016, 71, 33-37.	4.7	42
155	Nanochannels for electrical biosensing. TrAC - Trends in Analytical Chemistry, 2016, 79, 134-150.	11.4	42
156	Carbon Nanotube Composite as Novel Platform for Microbial Biosensor. Electroanalysis, 2007, 19, 893-898.	2.9	41
157	Analysis of amino acids in complex samples by using voltammetry and multivariate calibration methods. Analytica Chimica Acta, 2004, 507, 247-253.	5.4	40
158	Photoluminescent lateral flow based on non-radiative energy transfer for protein detection in human serum. Biosensors and Bioelectronics, 2018, 100, 208-213.	10.1	40
159	Uranium (VI) detection in groundwater using a gold nanoparticle/paper-based lateral flow device. Scientific Reports, 2018, 8, 16157.	3.3	40
160	Electrochemical quantification of gold nanoparticles based on their catalytic properties toward hydrogen formation: Application in magnetoimmunoassays. Electrochemistry Communications, 2010, 12, 1501-1504.	4.7	39
161	Aminopyrazole-Based Ligand Induces Gold Nanoparticle Formation and Remains Available for Heavy Metal Ions Sensing. A Simple "Mix and Detect―Approach. Langmuir, 2010, 26, 10165-10170.	3.5	39
162	Antithyroid drug detection using an enzyme cascade blocking in a nanoparticleâ€based labâ€onâ€aâ€chip system. Biosensors and Bioelectronics, 2015, 67, 670-676.	10.1	39

#	Article	IF	CITATIONS
163	Fully printed one-step biosensing device using graphene/AuNPs composite. Biosensors and Bioelectronics, 2019, 129, 238-244.	10.1	39
164	Classical dot–blot format implemented as an amperometric hybridisation genosensor. Biosensors and Bioelectronics, 2001, 16, 1133-1142.	10.1	38
165	Amino Acid Determination Using Screen-Printed Electrochemical Sensors. Mikrochimica Acta, 2005, 150, 233-238.	5.0	38
166	Surface Characterizations of Mercury-Based Electrodes with the Resulting Micro and Nano Amalgam Wires and Spheres Formations May Reveal Both Gained Sensitivity and Faced Nonstability in Heavy Metal Detection. Journal of Physical Chemistry C, 2010, 114, 9049-9055.	3.1	38
167	Iridium oxide (IV) nanoparticle-based lateral flow immunoassay. Biosensors and Bioelectronics, 2019, 132, 132-135.	10.1	38
168	Graphite-epoxy composite as an alternative material to design mercury free working electrodes for stripping voltammetry. Electrochimica Acta, 2003, 48, 2599-2605.	5.2	37
169	Silver, gold and the corresponding core shell nanoparticles: synthesis and characterization. Journal of Nanoparticle Research, 2008, 10, 97-106.	1.9	37
170	Alzheimer Disease Biomarker Detection Through Electrocatalytic Water Oxidation Induced by Iridium Oxide Nanoparticles. Electroanalysis, 2014, 26, 1287-1294.	2.9	37
171	Magnetic nanoparticle-molecular imprinted polymer: A new impedimetric sensor for tributyltin detection. Electrochemistry Communications, 2017, 82, 6-11.	4.7	37
172	Microorganism-decorated nanocellulose for efficient diuron removal. Chemical Engineering Journal, 2018, 354, 1083-1091.	12.7	37
173	Dot-blot amperometric genosensor for detecting a novel determinant of β-lactamase resistance in Staphylococcus aureus. Analyst, The, 2001, 126, 1551-1557.	3.5	36
174	PCR-Genosensor Rapid Test for DetectingSalmonella. Electroanalysis, 2003, 15, 1815-1823.	2.9	36
175	Detection of cadmium sulphide nanoparticles by using screen-printed electrodes and a handheld device. Nanotechnology, 2007, 18, 035502.	2.6	36
176	Bismuth nanoparticles integration into heavy metal electrochemical stripping sensor. Electrophoresis, 2015, 36, 1872-1879.	2.4	35
177	A DNA Aptasensor for Electrochemical Detection of Vascular Endothelial Growth Factor. Journal of Nanoscience and Nanotechnology, 2015, 15, 3411-3416.	0.9	35
178	In Situ Plant Virus Nucleic Acid Isothermal Amplification Detection on Gold Nanoparticle-Modified Electrodes. Analytical Chemistry, 2019, 91, 4790-4796.	6.5	35
179	Thick-film biosensors for pesticides produced by screen-printing of graphite–epoxy composite and biocomposite pastes. Sensors and Actuators B: Chemical, 2001, 79, 48-57.	7.8	33
180	Controlled formation of nanostructured CaCO3–PEI microparticles with high biofunctionalizing capacity. Journal of Materials Chemistry, 2012, 22, 15326.	6.7	33

#	Article	IF	CITATIONS
181	Graphene/Silicon Heterojunction Schottky Diode for Vapors Sensing Using Impedance Spectroscopy. Small, 2014, 10, 4193-4199.	10.0	33
182	Electrochromism: An emerging and promising approach in (bio)sensing technology. Materials Today, 2021, 50, 476-498.	14.2	33
183	In situ monitoring of PTHLH secretion in neuroblastoma cells cultured onto nanoporous membranes. Biosensors and Bioelectronics, 2018, 107, 62-68.	10.1	32
184	Nanodiagnostics to Face SARS-CoV-2 and Future Pandemics: From an Idea to the Market and Beyond. ACS Nano, 2021, 15, 17137-17149.	14.6	32
185	Carbon Nanotubes: Exciting New Materials for Microanalysis and Sensing. Mikrochimica Acta, 2006, 152, 155-156.	5.0	31
186	Bismuth Film Combined with Screenâ€Printed Electrode as Biosensing Platform for Phenol Detection. Electroanalysis, 2010, 22, 1429-1436.	2.9	31
187	Low-Cost Strategy for the Development of a Rapid Electrochemical Assay for Bacteria Detection Based on AuAg Nanoshells. ACS Omega, 2018, 3, 18849-18856.	3.5	31
188	COVID-19 biosensing technologies. Biosensors and Bioelectronics, 2021, 178, 113046.	10.1	30
189	Integration of a glucose biosensor based on an epoxy-graphite-TTF·TCNQ-GOD biocomposite into a FIA system. Sensors and Actuators B: Chemical, 2005, 107, 742-748.	7.8	29
190	An iridium oxide nanoparticle and polythionine thin film based platform for sensitive Leishmania DNA detection. Journal of Materials Chemistry B, 2015, 3, 5166-5171.	5.8	29
191	Architecting Graphene Oxide Rolledâ€Up Micromotors: A Simple Paperâ€Based Manufacturing Technology. Small, 2018, 14, 1702746.	10.0	29
192	Integrating gold nanoclusters, folic acid and reduced graphene oxide for nanosensing of glutathione based on "turn-off―fluorescence. Scientific Reports, 2021, 11, 2375.	3.3	29
193	Low-Cost, User-Friendly, All-Integrated Smartphone-Based Microplate Reader for Optical-Based Biological and Chemical Analyses. Analytical Chemistry, 2022, 94, 1271-1285.	6.5	29
194	Wearable and fully printed microfluidic nanosensor for sweat rate, conductivity, and copper detection with healthcare applications. Biosensors and Bioelectronics, 2022, 202, 114005.	10.1	29
195	The usage of a bismuth film electrode as transducer in glucose biosensing. Mikrochimica Acta, 2008, 160, 269-273.	5.0	28
196	Supramolecular interaction of dopamine with β-cyclodextrin: An experimental and theoretical electrochemical study. Journal of Electroanalytical Chemistry, 2014, 717-718, 103-109.	3.8	28
197	Onâ€theâ€Spot Immobilization of Quantum Dots, Graphene Oxide, and Proteins via Hydrophobins. Advanced Functional Materials, 2015, 25, 6084-6092.	14.9	28
198	A plug, print & play inkjet printing and impedance-based biosensing technology operating through a smartphone for clinical diagnostics. Biosensors and Bioelectronics, 2022, 196, 113737.	10.1	28

#	Article	IF	CITATIONS
199	Determination of chloride complex of Au(III) by capillary zone electrophoresis with direct UV detection. Journal of Chromatography A, 1995, 718, 227-232.	3.7	27
200	On-chip electrochemical detection of CdS quantum dots using normal and multiple recycling flow through modes. Lab on A Chip, 2012, 12, 2000.	6.0	27
201	Nanoparticles-based nanochannels assembled on a plastic flexible substrate for label-free immunosensing. Nano Research, 2015, 8, 1180-1188.	10.4	27
202	Electrochemical Impedance Spectroscopy (bio)sensing through hydrogen evolution reaction induced by gold nanoparticles. Biosensors and Bioelectronics, 2015, 67, 53-58.	10.1	27
203	Water Activated Graphene Oxide Transfer Using Wax Printed Membranes for Fast Patterning of a Touch Sensitive Device. ACS Nano, 2016, 10, 853-860.	14.6	27
204	Detection of parathyroid hormone-like hormone in cancer cell cultures by gold nanoparticle-based lateral flow immunoassays. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 53-61.	3.3	27
205	Time- and Size-Resolved Plasmonic Evolution with nm Resolution of Galvanic Replacement Reaction in AuAg Nanoshells Synthesis. Chemistry of Materials, 2018, 30, 5098-5107.	6.7	27
206	Graphite epoxy composite electrodes modified with bacterial cells. Bioelectrochemistry, 2006, 69, 128-131.	4.6	26
207	Toward integrated detection and graphene-based removal of contaminants in a lab-on-a-chip platform. Nano Research, 2017, 10, 2296-2310.	10.4	26
208	A Carbon Nanotube PVC Based Matrix Modified with Glutaraldehyde Suitable for Biosensor Applications. Electroanalysis, 2008, 20, 603-610.	2.9	25
209	Structural characterization by confocal laser scanning microscopy and electrochemical study of multi-walled carbon nanotube tyrosinase matrix for phenol detection. Analyst, The, 2010, 135, 1918.	3.5	25
210	Variable behaviour of flexible N,O-mixed pyrazole ligand towards Zn(ii), Cd(ii) and Hg(ii) ions. Synthesis, crystal structure and fluorescent properties. CrystEngComm, 2011, 13, 6457.	2.6	25
211	Nanoparticles Based Electroanalysis in Diagnostics Applications. Electroanalysis, 2013, 25, 15-27.	2.9	25
212	Casein modified gold nanoparticles for future theranostic applications. Biosensors and Bioelectronics, 2013, 40, 271-276.	10.1	25
213	2-dimensional materials-based electrical/optical platforms for smart on-off diagnostics applications. 2D Materials, 2020, 7, 032001.	4.4	25
214	Label-free and reagentless electrochemical genosensor based on graphene acid for meat adulteration detection. Biosensors and Bioelectronics, 2022, 195, 113628.	10.1	25
215	Attomolar analyte sensing techniques (AttoSens): a review on a decade of progress on chemical and biosensing nanoplatforms. Chemical Society Reviews, 2021, 50, 13012-13089.	38.1	25
216	Extremely fast and high Pb2+ removal capacity using a nanostructured hybrid material. Journal of Materials Chemistry A, 2014, 2, 8766.	10.3	24

#	Article	IF	CITATIONS
217	The Microbiome Meets Nanotechnology: Opportunities and Challenges in Developing New Diagnostic Devices. Advanced Materials, 2021, 33, e2006104.	21.0	24
218	Cold nanoparticles decorated with a ferrocene derivative as a potential shift-based transducing system of interest for sensitive immunosensing. Journal of Materials Chemistry B, 2013, 1, 2951.	5.8	23
219	Enhanced detection of quantum dots labeled protein by simultaneous bismuth electrodeposition into microfluidic channel. Electrophoresis, 2016, 37, 432-437.	2.4	23
220	Paper Based Photoluminescent Sensing Platform with Recognition Sites for Tributyltin. ACS Sensors, 2019, 4, 645-653.	7.8	23
221	Mercury-Free PSA of Heavy Metals Using Graphite-Epoxy Composite Electrodes. Electroanalysis, 2002, 14, 1281-1287.	2.9	21
222	Oil dispersion of Agl/Ag2S salts as a new electroactive material for potentiometric sensing of iodide and cyanide. Sensors and Actuators B: Chemical, 2004, 101, 57-62.	7.8	21
223	Paper-Based Electrophoretic Bioassay: Biosensing in Whole Blood Operating via Smartphone. Analytical Chemistry, 2021, 93, 3112-3121.	6.5	21
224	Screen-Printed Electroluminescent Lamp Modified with Graphene Oxide as a Sensing Device. ACS Applied Materials & Interfaces, 2018, 10, 20775-20782.	8.0	20
225	2D Materialsâ€based Platforms for Electroanalysis Applications. Electroanalysis, 2018, 30, 1271-1280.	2.9	20
226	Application of Graphite-Epoxy Composite Electrodes in Differential Pulse Anodic Stripping Voltammetry of Heavy Metals. Mikrochimica Acta, 2004, 147, 245.	5.0	19
227	Carbon nanofiber vs. carbon microparticles as modifiers of glassy carbon and gold electrodes applied in electrochemical sensing of NADH. Talanta, 2007, 74, 398-404.	5.5	19
228	Production of biofunctionalized MoS ₂ flakes with rationally modified lysozyme: a biocompatible 2D hybrid material. 2D Materials, 2017, 4, 035007.	4.4	19
229	Optical-Based (Bio) Sensing Systems Using Magnetic Nanoparticles. Magnetochemistry, 2019, 5, 59.	2.4	19
230	Lateral flow device for water fecal pollution assessment: from troubleshooting of its microfluidics using bioluminescence to colorimetric monitoring of generic <i>Escherichia coli</i> . Lab on A Chip, 2021, 21, 2417-2426.	6.0	19
231	Crystal and electrochemical properties of water dispersed CdS nanocrystals obtained via reverse micelles and arrested precipitation. Nanotechnology, 2006, 17, 2553-2559.	2.6	18
232	Paperâ€Based Electrodes for Nanoparticles Detection. Particle and Particle Systems Characterization, 2013, 30, 662-666.	2.3	18
233	Magnetic and electrokinetic manipulations on a microchip device for beadâ€based immunosensing applications. Electrophoresis, 2011, 32, 861-869.	2.4	17
234	Annexin-V/quantum dot probes for multimodal apoptosis monitoring in living cells: improving bioanalysis using electrochemistry. Nanoscale, 2015, 7, 4097-4104.	5.6	17

#	Article	IF	CITATIONS
235	A Novel Ratiometric Fluorescent Approach for the Modulation of the Dynamic Range of Lateral Flow Immunoassays. Advanced Materials Technologies, 2022, 7, .	5.8	17
236	Determination of Pb and Cu by Anodic Stripping Voltammetry Using Glassy Carbon Electrodes Modified with Mercury or Mercury-Nafion Films. Mikrochimica Acta, 2000, 135, 29-33.	5.0	16
237	Microchip electrophoresis with wall-jet electrochemical detector: Influence of detection potential upon resolution of solutes. Electrophoresis, 2006, 27, 5068-5072.	2.4	16
238	Stable and sensitive flow-through monitoring of phenol using a carbon nanotube based screen printed biosensor. Nanotechnology, 2010, 21, 245502.	2.6	15
239	Medium Dependent Dual Turn-On/Turn-Off Fluorescence System for Heavy Metal Ions Sensing. Journal of Physical Chemistry C, 2012, 116, 1987-1994.	3.1	15
240	Nanostructured CaCO ₃ â€poly(ethyleneimine) microparticles for phenol sensing in fluidic microsystem. Electrophoresis, 2013, 34, 2011-2016.	2.4	14
241	Magnetic Enzymatic Platform for Organophosphate Pesticide Detection Using Boron-doped Diamond Electrodes. Analytical Sciences, 2015, 31, 1061-1068.	1.6	14
242	Rapid on-chip apoptosis assay on human carcinoma cells based on annexin-V/quantum dot probes. Biosensors and Bioelectronics, 2017, 94, 408-414.	10.1	14
243	Nanomaterialâ€based Sensors for the Study of DNA Interaction with Drugs. Electroanalysis, 2019, 31, 1845-1867.	2.9	14
244	Paper-based biosensors for cancer diagnostics. Trends in Chemistry, 2022, 4, 554-567.	8.5	14
245	Microchip Capillary Electrophoresis-Electrochemistry with Rigid Graphite-Epoxy Composite Detector. Electroanalysis, 2006, 18, 207-210.	2.9	13
246	Compact microcubic structures platform based on self-assembly Prussian blue nanoparticles with highly tuneable conductivity. Physical Chemistry Chemical Physics, 2010, 12, 15505.	2.8	13
247	Electrochemical Investigation of Cellular Uptake of Quantum Dots Decorated with a Proline-Rich Cell Penetrating Peptide. Bioconjugate Chemistry, 2011, 22, 180-185.	3.6	13
248	Hybrid Self-Assembled Materials Constituted by Ferromagnetic Nanoparticles and Tannic Acid: a Theoretical and Experimental Investigation. Journal of the Brazilian Chemical Society, 2015, , .	0.6	13
249	Electrochemical Biosensors: Enzyme Kinetics and Role of Nanomaterials. , 2018, , 140-155.		13
250	Iridium oxide (IV) nanoparticle-based electrocatalytic detection of PBDE. Biosensors and Bioelectronics, 2019, 127, 150-154.	10.1	13
251	Organic-based field effect transistors for protein detection fabricated by inkjet-printing. Organic Electronics, 2020, 84, 105794.	2.6	13
252	Comparison of chromium speciation by CZE and ion exchange followed by AAS. Fresenius' Journal of Analytical Chemistry, 2000, 367, 12-16.	1.5	12

#	Article	IF	CITATIONS
253	Assembly of Gold Nanorods for Highly Sensitive Detection of Mercury Ions. IEEE Sensors Journal, 2013, 13, 2834-2841.	4.7	12
254	An integrated phenol â€~̃sensoremoval' microfluidic nanostructured platform. Biosensors and Bioelectronics, 2014, 55, 355-359.	10.1	12
255	An innovative autonomous robotic system for on-site detection of heavy metal pollution plumes in surface water. Environmental Monitoring and Assessment, 2022, 194, 122.	2.7	12
256	Bioluminescent nanopaper for rapid screening of toxic substances. Nano Research, 2018, 11, 114-125.	10.4	11
257	Highly Loaded Mildly Edgeâ€Oxidized Graphene Nanosheet Dispersions for Largeâ€Scale Inkjet Printing of Electrochemical Sensors. ChemElectroChem, 2020, 7, 460-468.	3.4	11
258	Emerging Nanomaterials for Analytical Detection. Comprehensive Analytical Chemistry, 2016, 74, 195-246.	1.3	10
259	Tunable electrochemistry of gold-silver alloy nanoshells. Nano Research, 2018, 11, 6336-6345.	10.4	10
260	Selective stamping of laser scribed rGO nanofilms: from sensing to multiple applications. 2D Materials, 2020, 7, 024006.	4.4	10
261	A Programmable Electrochemical Yâ€Shaped DNA Scaffold Sensor for the Singleâ€Step Detection of Antibodies and Proteins in Untreated Biological Fluids. Advanced Functional Materials, 2022, 32, .	14.9	10
262	Networked Biomedical System for Ubiquitous Health Monitoring. Mobile Information Systems, 2008, 4, 211-218.	0.6	9
263	Gold Nanoparticles: A Versatile Label for Affinity Electrochemical Biosensors. , 0, , 177-197.		9
264	Multifunctional system based on hybrid nanostructured rod formation, for sensoremoval applications of Pb2+ as a model toxic metal. Journal of Materials Chemistry A, 2013, 1, 13532.	10.3	9
265	Production and printing of graphene oxide foam ink for electrocatalytic applications. Electrochemistry Communications, 2019, 98, 6-9.	4.7	9
266	Improved Aliivibrio fischeri based-toxicity assay: Graphene-oxide as a sensitivity booster with a mobile-phone application. Journal of Hazardous Materials, 2021, 406, 124434.	12.4	9
267	A potentiometric biosensor for d-amygdalin based on a consolidated biocomposite membrane. Analytica Chimica Acta, 1999, 391, 65-72.	5.4	8
268	Chapter 7 Graphite-epoxy electrodes for stripping analysis. Comprehensive Analytical Chemistry, 2007, , 143-161.	1.3	8
269	Graphene-based biosensors. 2D Materials, 2020, 7, 040401.	4.4	8
270	Electrochemical Detection of DNA Hybridization Using Micro and Nanoparticles. Methods in Molecular Biology, 2009, 504, 127-143.	0.9	8

#	Article	IF	CITATIONS
271	Smart nanobiosensors in agriculture. Nature Food, 2021, 2, 920-921.	14.0	8
272	Potentiometric characterisation of acid rains using corrected linear plots. Analytica Chimica Acta, 2000, 405, 173-178.	5.4	7
273	Potentiometric characterization of weak acids by multiple sample addition—l. Linear equations and intrinsic performance of the method. Talanta, 1994, 41, 2033-2042.	5.5	6
274	Stripping Potentiometry of Lead, Cadmium and Copper at a Nafion Coated Glassy Carbon Electrode with Encapsulated Mercury Acetate. Analytical Letters, 1997, 30, 1223-1234.	1.8	6
275	Quantum Dots for the Development of Optical Biosensors Based on Fluorescence. , 0, , 199-245.		6
276	The Use of Quantum Dots for Immunochemistry Applications. , 2012, 906, 185-192.		6
277	Lateral Flow Biosensors Based on Gold Nanoparticles. Comprehensive Analytical Chemistry, 2014, 66, 569-605.	1.3	6
278	Graphene Nanobeacons with Highâ€Affinity Pockets for Combined, Selective, and Effective Decontamination and Reagentless Detection of Heavy Metals. Small, 2022, 18, .	10.0	6
279	Consolidated biocomposite membrane technology for production of potentiometric biosensors. Sensors and Actuators B: Chemical, 1999, 60, 97-105.	7.8	5
280	Nanoparticle-based lateral flow assays. Comprehensive Analytical Chemistry, 2020, 89, 313-359.	1.3	5
281	Development of a Heavy Metal Sensing Boat for Automatic Analysis in Natural Waters Utilizing Anodic Stripping Voltammetry. ACS ES&T Water, 2021, 1, 2470-2476.	4.6	5
282	Screen-printed electrodes incorporated in a flow system for the decentralized monitoring of lead, cadmium and copper in natural and wastewater samples. International Journal of Environmental Analytical Chemistry, 2013, 93, 872-883.	3.3	4
283	Microfluidic Electrochemical Biosensors: Fabrication and Applications. , 2015, , 141-160.		4
284	Protein and DNA Electrochemical Sensing Using Anodized Aluminum Oxide Nanochannel Arrays. Springer Series in Materials Science, 2015, , 271-291.	0.6	4
285	Control of Electronâ€ŧransfer in Immunonanosensors by Using Polyclonal and Monoclonal Antibodies. Electroanalysis, 2016, 28, 1795-1802.	2.9	4
286	Nanomaterials-Based Platforms for Environmental Monitoring. Comprehensive Analytical Chemistry, 2017, , 207-236.	1.3	4
287	Electrochemical Immunosensing Using Micro and Nanoparticles. Methods in Molecular Biology, 2009, 504, 145-155.	0.9	4
288	Application of Nanomaterials for DNA Sensing. Nucleic Acids and Molecular Biology, 2014, , 305-332.	0.2	4

#	Article	IF	CITATIONS
289	Potentiometric characterization of weak acids by multiple sample addition II. The effect of chemical interferences and the practical performance of linearization methods. Talanta, 1995, 42, 1433-1445.	5.5	3
290	Chapter 8 Composite and biocomposite materials for electrochemical sensing. Comprehensive Analytical Chemistry, 2003, , 377-411.	1.3	3
291	Procedure 7 Determination of lead and cadmium in tap water and soils by stripping analysis using mercury-free graphite–epoxy composite electrodes. Comprehensive Analytical Chemistry, 2007, , e47-e52.	1.3	3
292	Electrochemical Study of Dopamine and Ascorbic Acid by Means of Supramolecular Systems. ECS Transactions, 2008, 15, 325-334.	0.5	3
293	Study on the Supramolecular Interaction of Dopamine with Carbon Nanotubes and β-Cyclodextrin Immovilized over a Carbon Paste Electrode. ECS Transactions, 2011, 36, 471-481.	0.5	3
294	Nano-Assembled Supramolecular Films from Chitosan-Stabilized Gold Nanoparticles and Cobalt(II) Phthalocyanine. Journal of the Brazilian Chemical Society, 2013, , .	0.6	3
295	Characterization of di(2-ethylhexyl)thiophosphoric acid by potentiometric titration and capillary zone electrophoresis. Fresenius' Journal of Analytical Chemistry, 1997, 358, 489-492.	1.5	2
296	Chapter 35 Microchip electrophoresis/electrochemistry systems for analysis of nitroaromatic explosives. Comprehensive Analytical Chemistry, 2007, , 873-884.	1.3	2
297	Electroanalysis-Based Clinical Diagnostics. Electroanalysis, 2014, 26, 1110-1110.	2.9	2
298	Electrocatalytic Detection: Magnetic Bead/Gold Nanoparticle Double-Labeled Primers for Electrochemical Detection of Isothermal Amplified <i>Leishmania</i> DNA (Small 2/2016). Small, 2016, 12, 204-204.	10.0	2
299	Nonâ€Invasive Diagnostics: Integrated Devices for Nonâ€Invasive Diagnostics (Adv. Funct. Mater. 15/2021). Advanced Functional Materials, 2021, 31, 2170105.	14.9	2
300	ATP Sensing Paper with Smartphone Bioluminescence-Based Detection. Methods in Molecular Biology, 2022, , 297-307.	0.9	2
301	Composite and Biocomposite Materials for Electrochemical Sensing. ChemInform, 2003, 34, no.	0.0	1
302	Dopamine Detection using an Electrode Modified with Carbon Nanotubes. ECS Transactions, 2007, 3, 77-80.	0.5	1
303	Use of Sequential Injection Analysis to construct a Potentiometric Electronic Tongue: Application to the Multidetermination of Heavy Metals. , 2009, , .		1
304	Permeability Improvement of Electropolymerized Polypyrrole Films in Water Using Magnetic Hydrophilic Microbeads. Electroanalysis, 2009, 21, 887-890.	2.9	1
305	Supramolecular Systems Construction for the Selective Quantitative Determination of Dopamine in the Presence of Ascorbic Acid. ECS Transactions, 2011, 36, 385-392.	0.5	1
306	Electrochemical Study of the Formation of Surface Inclusion Complex of Ascorbic Acid with Immovilized β-Ciclodextrin and Carbon Nanotubes over a Carbon Paste Electrode. ECS Transactions, 2011, 36, 431-438.	0.5	1

#	Article	IF	CITATIONS
307	Medical Nanobiosensors. Nanostructure Science and Technology, 2014, , 117-143.	0.1	1
308	Nanoparticle/Nanochannels-Based Electrochemical Biosensors. Nanoscience and Technology, 2015, , 205-223.	1.5	1
309	Multivariate Calibration Model for a Voltammetric Electronic Tongue Based on a Multiple Output Wavelet Neural Network. Studies in Computational Intelligence, 2009, , 137-167.	0.9	1
310	Optical smartphone-based sensing: diagnostic of biomarkers. , 2022, , 277-302.		1
311	Point-of-Care Sensors in Clinical Environments: Potential and Challenges. , 2022, , .		1
312	Editorial on COVID-19 biosensing technologies- 2d Edition. Biosensors and Bioelectronics, 2022, 212, 114340.	10.1	1
313	A Practical Approach to Potentiometric Biosensors Based on Consolidated Composites: Construction and Evaluation of a D-Amygdalin Biosensor. The Chemical Educator, 1999, 4, 137-140.	0.0	0
314	Au-solid-state potentiometric sensor for iodide based on the oil dispersion of mixed AgI/Ag/sub 2/S salts. , 0, , .		0
315	Procedure 53 DNA analysis by using gold nanoparticle as labels. Comprehensive Analytical Chemistry, 2007, , e381-e388.	1.3	0
316	Procedure 49 Analysis of nitroaromatic explosives with microchip electrophoresis using a graphite–epoxy composite detector. Comprehensive Analytical Chemistry, 2007, , e351-e355.	1.3	0
317	Chapter 38 Gold nanoparticles in DNA and protein analysis. Comprehensive Analytical Chemistry, 2007, , 941-958.	1.3	0
318	Quantum Dot Applications in Biomolecule Assays. , 0, , 333-354.		0
319	Nanoparticles and Inductively Coupled Plasma Mass Spectroscopy–Based Biosensing. , 0, , 355-376.		0
320	Improved Electrochemistry of Biomolecules Using Nanomaterials. , 0, , 97-135.		0
321	Electrochemical Detection of DNA Using Nanomaterials Based Sensors. Soft and Biological Matter, 2012, , 185-201.	0.3	0
322	Nanomaterials-Based (Bio)Sensing Systems for Safety and Security Applications. NATO Science for Peace and Security Series A: Chemistry and Biology, 2012, , 43-61.	0.5	0
323	Assembly of gold nanorods for highly sensitive detection of heavy metals. , 2012, , .		0
324	Nanoparticles for DNA, Protein, and Cell Electrochemical Detection. , 2014, , 209-241.		0

19

#	Article	IF	CITATIONS
325	Microbiome and Nanotechnology: The Microbiome Meets Nanotechnology: Opportunities and Challenges in Developing New Diagnostic Devices (Adv. Mater. 18/2021). Advanced Materials, 2021, 33, 2170139.	21.0	0
326	Recent Trends in Nanomaterials Integration into Simple Biosensing Platforms. , 2017, , 389-406.		0
327	Signal enhancement strategies. , 2022, , 123-168.		Ο