Joel Ullom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8371497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2513-2533.	4.4	435
2	Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors. Journal of Low Temperature Physics, 2016, 184, 389-395.	1.4	103
3	Cooling of bulk material by electron-tunneling refrigerators. Applied Physics Letters, 2005, 86, 173508.	3.3	79
4	A high resolution gamma-ray spectrometer based on superconducting microcalorimeters. Review of Scientific Instruments, 2012, 83, 093113.	1.3	77
5	Simultaneous readout of 128 X-ray and gamma-ray transition-edge microcalorimeters using microwave SQUID multiplexing. Applied Physics Letters, 2017, 111, .	3.3	75
6	High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential. Journal of Synchrotron Radiation, 2015, 22, 766-775.	2.4	59
7	14-pixel, multiplexed array of gamma-ray microcalorimeters with 47eV energy resolution at 103keV. Applied Physics Letters, 2007, 90, 193508.	3.3	58
8	High-power on-chip microrefrigerator based on a normal- metal/insulator/superconductor tunnel junction. Applied Physics Letters, 1999, 74, 2705-2707.	3.3	41
9	High resolution x-ray transition-edge sensor cooled by tunnel junction refrigerators. Applied Physics Letters, 2008, 92, .	3.3	40
10	Microwave SQUID multiplexer demonstration for cosmic microwave background imagers. Applied Physics Letters, 2017, 111, .	3.3	40
11	Code-division-multiplexed readout of large arrays of TES microcalorimeters. Applied Physics Letters, 2016, 109, .	3.3	38
12	Magnetic field dependence of quasiparticle losses in a superconductor. Applied Physics Letters, 1998, 73, 2494-2496.	3.3	25
13	A Scalable Readout for Microwave SQUID Multiplexing of Transition-Edge Sensors. Journal of Low Temperature Physics, 2018, 193, 485-497.	1.4	21
14	A microwave SQUID multiplexer optimized for bolometric applications. Applied Physics Letters, 2021, 118, .	3.3	21
15	Crosstalk in microwave SQUID multiplexers. Applied Physics Letters, 2019, 115, .	3.3	15
16	Absolute energies and emission line shapes of the L x-ray transitions of lanthanide metals. Metrologia, 2021, 58, 015016.	1.2	12
17	Indium Bump Process for Low-Temperature Detectors and Readout. Journal of Low Temperature Physics, 2022, 209, 293-298.	1.4	6
18	Superconducting Transition-Edge Sensor Bolometers with Integrated Electron-tunneling Refrigerators. Journal of Low Temperature Physics, 2008, 151, 489-494.	1.4	3