
Félicien Meunier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8371455/publications.pdf Version: 2024-02-01

FÃOLICIEN MELINIER

#	Article	IF	CITATIONS
1	Liana optical traits increase tropical forest albedo and reduce ecosystem productivity. Global Change Biology, 2022, 28, 227-244.	4.2	10
2	Investigating Soil–Root Interactions with the Numerical Model R-SWMS. Methods in Molecular Biology, 2022, 2395, 259-283.	0.4	0
3	Two Co-occurring Liana Species Strongly Differ in Their Hydraulic Traits in a Water-Limited Neotropical Forest. Frontiers in Forests and Global Change, 2022, 5, .	1.0	1
4	Using terrestrial laser scanning to constrain forest ecosystem structure and functions in the Ecosystem Demography model (ED2.2). Geoscientific Model Development, 2022, 15, 4783-4803.	1.3	2
5	Implications of 3D Forest Stand Reconstruction Methods for Radiative Transfer Modeling: A Case Study in the Temperate Deciduous Forest. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	2
6	Unraveling the relative role of light and water competition between lianas and trees in tropical forests: A vegetation model analysis. Journal of Ecology, 2021, 109, 519-540.	1.9	24
7	Lianas Significantly Reduce Aboveground and Belowground Carbon Storage: A Virtual Removal Experiment. Frontiers in Forests and Global Change, 2021, 4, .	1.0	4
8	Lianas and trees exhibit divergent intrinsic waterâ€use efficiency along elevational gradients in South American and African tropical forests. Global Ecology and Biogeography, 2021, 30, 2259-2272.	2.7	7
9	From hydraulic root architecture models to macroscopic representations of root hydraulics in soil water flow and land surface models. Hydrology and Earth System Sciences, 2021, 25, 4835-4860.	1.9	14
10	Within-Site Variability of Liana Wood Anatomical Traits: A Case Study in Laussat, French Guiana. Forests, 2020, 11, 523.	0.9	6
11	Centuryâ€long apparent decrease in intrinsic waterâ€use efficiency with no evidence of progressive nutrient limitation in African tropical forests. Global Change Biology, 2020, 26, 4449-4461.	4.2	20
12	MARSHAL, a novel tool for virtual phenotyping of maize root system hydraulic architectures. In Silico Plants, 2020, 2, .	0.8	8
13	Call for Participation: Collaborative Benchmarking of Functional-Structural Root Architecture Models. The Case of Root Water Uptake. Frontiers in Plant Science, 2020, 11, 316.	1.7	18
14	Modeling the impact of liana infestation on the demography and carbon cycle of tropical forests. Global Change Biology, 2019, 25, 3767-3780.	4.2	33
15	Functional–structural root-system model validation using a soil MRI experiment. Journal of Experimental Botany, 2019, 70, 2797-2809.	2.4	22
16	Impact of Maize Roots on Soil–Root Electrical Conductivity: A Simulation Study. Vadose Zone Journal, 2019, 18, 190037.	1.3	13
17	Connecting the dots between computational tools to analyse soil–root water relations. Journal of Experimental Botany, 2019, 70, 2345-2357.	2.4	22
18	Hydraulic conductivity of soil-grown lupine and maize unbranched roots and maize root-shoot junctions. Journal of Plant Physiology, 2018, 227, 31-44.	1.6	46

Félicien Meunier

#	Article	IF	CITATIONS
19	Root type matters: measurement of water uptake by seminal, crown, and lateral roots in maize. Journal of Experimental Botany, 2018, 69, 1199-1206.	2.4	100
20	Measuring and Modeling Hydraulic Lift of <i>Lolium multiflorum</i> Using Stable Water Isotopes. Vadose Zone Journal, 2018, 17, 1-15.	1.3	31
21	A hybrid analytical-numerical method for solving water flow equations in root hydraulic architectures. Applied Mathematical Modelling, 2017, 52, 648-663.	2.2	36
22	Water movement through plant roots – exact solutions of the water flow equation in roots with linear or exponential piecewise hydraulic properties. Hydrology and Earth System Sciences, 2017, 21, 6519-6540.	1.9	16
23	A new model for optimizing the water acquisition of root hydraulic architectures over full crop cycles. , 2016, , .		7
24	Estimation of the hydraulic conductivities of lupine roots by inverse modelling of high-resolution measurements of root water uptake. Annals of Botany, 2016, 118, 853-864.	1.4	42
25	Root System Markup Language: Toward a Unified Root Architecture Description Language. Plant Physiology, 2015, 167, 617-627.	2.3	105
26	Plant Water Uptake in Drying Soils. Plant Physiology, 2014, 164, 1619-1627.	2.3	122
27	Impact of contrasted maize root traits at flowering on water stress tolerance – A simulation study. Field Crops Research, 2014, 165, 125-137.	2.3	79