David Kraus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8371230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling Intra―and Interannual Variability of BVOC Emissions From Maize, Oil‧eed Rape, and Ryegrass. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	2
2	Significant Global Yield-Gap Closing Is Possible Without Increasing the Intensity of Environmentally Harmful Nitrogen Losses. Frontiers in Sustainable Food Systems, 2022, 6, .	3.9	3
3	Greenhouse Gas Mitigation Potential of Alternate Wetting and Drying for Rice Production at National Scale—A Modeling Case Study for the Philippines. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	5
4	Modeling gas exchange and biomass production in West African Sahelian and Sudanian ecological zones. Geoscientific Model Development, 2021, 14, 3789-3812.	3.6	3
5	Dynamic simulation of management events for assessing impacts of climate change on pre-alpine grassland productivity. European Journal of Agronomy, 2021, 128, 126306.	4.1	14
6	Beyond livestock carrying capacity in the Sahelian and Sudanian zones of West Africa. Scientific Reports, 2021, 11, 22094.	3.3	5
7	Simulating Long-Term Development of Greenhouse Gas Emissions, Plant Biomass, and Soil Moisture of a Temperate Grassland Ecosystem under Elevated Atmospheric CO2. Agronomy, 2020, 10, 50.	3.0	11
8	Approaches and concepts of modelling denitrification: increased process understanding using observational data can reduce uncertainties. Current Opinion in Environmental Sustainability, 2020, 47, 37-45.	6.3	26
9	Dynamic coupling of allometric ratios to a process-based forest growth model for estimating the impacts of stand density changes. Forestry, 2020, 93, 601-615.	2.3	7
10	New records of very high nitrous oxide fluxes from rice cannot be generalized for water management and climate impacts. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1464-1465.	7.1	14
11	Constraining N cycling in the ecosystem model LandscapeDNDC with the stable isotope model SIMONE. Ecology, 2019, 100, e02675.	3.2	16
12	Greenhouse gas footprint of diversifying rice cropping systems: Impacts of water regime and organic amendments. Agriculture, Ecosystems and Environment, 2019, 270-271, 41-54.	5.3	36
13	Closing the N-Budget: How Simulated Groundwater-Borne Nitrate Supply Affects Plant Growth and Greenhouse Gas Emissions on Temperate Grassland. Atmosphere, 2018, 9, 407.	2.3	5
14	Postfire nitrogen balance of Mediterranean shrublands: Direct combustion losses versus gaseous and leaching losses from the postfire soil mineral nitrogen flush. Global Change Biology, 2018, 24, 4505-4520.	9.5	29
15	Importance of soil NO emissions for the total atmospheric NOx budget of Saxony, Germany. Atmospheric Environment, 2017, 152, 61-76.	4.1	21
16	Exploring impacts of vegetated buffer strips on nitrogen cycling using a spatially explicit hydro-biogeochemical modeling approach. Environmental Modelling and Software, 2017, 90, 55-67.	4.5	17
17	Rejecting hydro-biogeochemical model structures by multi-criteria evaluation. Environmental Modelling and Software, 2017, 93, 1-12.	4.5	19
18	Constraining a complex biogeochemical model for CO ₂ and N ₂ O emission simulations from various land uses by model–data fusion. Biogeosciences, 2017, 14, 3487-3508.	3.3	16

DAVID KRAUS

#	Article	IF	CITATIONS
19	How well can we assess impacts of agricultural land management changes on the total greenhouse gas balance (CO2, CH4 and N2O) of tropical rice-cropping systems with a biogeochemical model?. Agriculture, Ecosystems and Environment, 2016, 224, 104-115.	5.3	27
20	Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems. Global Change Biology, 2016, 22, 432-448.	9.5	129
21	A modeling study on mitigation of N2O emissions and NO3 leaching at different agricultural sites across Europe using LandscapeDNDC. Science of the Total Environment, 2016, 553, 128-140.	8.0	52
22	Impacts of management and climate change on nitrate leaching in a forested karst area. Journal of Environmental Management, 2016, 165, 243-252.	7.8	45
23	Diurnal patterns of methane emissions from paddy rice fields in the Philippines. Journal of Plant Nutrition and Soil Science, 2015, 178, 755-767.	1.9	17
24	Simulation of CO2 Fluxes in European Forest Ecosystems with the Coupled Soil-Vegetation Process Model "LandscapeDNDC― Forests, 2015, 6, 1779-1809.	2.1	18
25	A new LandscapeDNDC biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems. Plant and Soil, 2015, 386, 125-149.	3.7	52
26	Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems. Nutrient Cycling in Agroecosystems, 2015, 101, 37-53.	2.2	74
27	Estimation and mitigation of N2O emission and nitrate leaching from intensive crop cultivation in the Haean catchment, South Korea. Science of the Total Environment, 2015, 529, 40-53.	8.0	30
28	Simulation of Land Management Effects on Soil N2O Emissions Using a Coupled Hydrology-Biogeochemistry Model on the Landscape Scale. , 2015, , 2207-2231.		0
29	Parameter-Induced Uncertainty Quantification of Regional N ₂ O Emissions and NO ₃ Leaching using the Biogeochemical Model LandscapeDNDC. Advances in Agricultural Systems Modeling, 0, , 149-171.	0.3	2