Kun Chang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8371117/kun-chang-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

15 4,488 12 23 g-index

23 4,862 11 5.95 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
15	Gel-assisted synthesis of CIZS for visible-light photocatalytic reduction reaction. <i>Chemical Engineering Journal</i> , 2022 , 429, 132364	14.7	2
14	Rational design of interfacial energy level matching for CuGaS2 based photocatalysts over hydrogen evolution reaction. <i>International Journal of Hydrogen Energy</i> , 2022 , 47, 11853-11862	6.7	0
13	La,Al-Codoped SrTiO3 as a Photocatalyst in Overall Water Splitting: Significant Surface Engineering Effects on Defect Engineering. <i>ACS Catalysis</i> , 2021 , 11, 11429-11439	13.1	12
12	Selective Preparation of 1T- and 2H-Phase MoS2 Nanosheets with Abundant Monolayer Structure and Their Applications in Energy Storage Devices. <i>ACS Applied Energy Materials</i> , 2020 , 3, 998-1009	6.1	28
11	Powder exfoliated MoS nanosheets with highly monolayer-rich structures as high-performance lithium-/sodium-ion-battery electrodes. <i>Nanoscale</i> , 2019 , 11, 1887-1900	7.7	71
10	Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 51-58	13	190
9	Targeted Synthesis of 2H- and 1T-Phase MoS Monolayers for Catalytic Hydrogen Evolution. <i>Advanced Materials</i> , 2016 , 28, 10033-10041	24	415
8	Efficient photochemical oxygen generation from water by phosphorus-doped H2MoO5. <i>Chemical Communications</i> , 2014 , 50, 12185-8	5.8	3
7	Graphene-like layered metal dichalcogenide/graphene composites: synthesis and applications in energy storage and conversion. <i>Materials Today</i> , 2014 , 17, 184-193	21.8	128
6	CTAB-assisted synthesis of single-layer MoS2graphene composites as anode materials of Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2202-2210	13	378
5	Ultrathin MoS2/Nitrogen-Doped Graphene Nanosheets with Highly Reversible Lithium Storage. <i>Advanced Energy Materials</i> , 2013 , 3, 839-844	21.8	417
4	Single-layer MoS2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17175		264
3	In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. <i>Chemical Communications</i> , 2011 , 47, 4252-4	5.8	712
2	L-cysteine-assisted synthesis of layered MoS/Igraphene composites with excellent electrochemical performances for lithium ion batteries. <i>ACS Nano</i> , 2011 , 5, 4720-8	16.7	1409
1	Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6251		450