Elizabeth Cochran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8371039/publications.pdf

Version: 2024-02-01

89 papers

4,124 citations

172207 29 h-index 60 g-index

93 all docs 93 docs citations

93 times ranked 3049 citing authors

#	Article	IF	CITATIONS
1	Alert Optimization of the PLUM Earthquake Early Warning Algorithm for the Western United States. Bulletin of the Seismological Society of America, 2022, 112, 803-819.	1.1	8
2	Fast rupture of the 2009 <i>M</i> wâ6.9 Canal de Ballenas earthquake in the Gulf of California dynamically triggers seismicity in California. Geophysical Journal International, 2022, 230, 528-541.	1.0	3
3	Quantifying the Sensitivity of Microearthquake Slip Inversions to Station Distribution Using a Dense Nodal Array. Bulletin of the Seismological Society of America, 2022, 112, 1252-1270.	1.1	5
4	A unified perspective of seismicity and fault coupling along the San Andreas Fault. Science Advances, 2022, 8, eabk1167.	4.7	19
5	Very Low Frequency Earthquakes in Between the Seismogenic and Tremor Zones in Cascadia?. AGU Advances, 2022, 3, .	2.3	5
6	What to expect when you are expecting earthquake early warning. Geophysical Journal International, 2022, 231, 1386-1403.	1.0	4
7	Shaking is Almost Always a Surprise: The Earthquakes That Produce Significant Ground Motion. Seismological Research Letters, 2021, 92, 460-468.	0.8	15
8	VS30 and Dominant Site Frequency (fd) as Provisional Station ML Corrections (dML) in California. Bulletin of the Seismological Society of America, 2021, 111, 61-76.	1.1	2
9	The Induced Mw 5.0 March 2020 West Texas Seismic Sequence. Journal of Geophysical Research: Solid Earth, 2021, 126, .	1.4	14
10	Characteristics of Frequent Dynamic Triggering of Microearthquakes in Southern California. Journal of Geophysical Research: Solid Earth, 2021, 126, .	1.4	11
11	Fluidâ€Earthquake and Earthquakeâ€Earthquake Interactions in Southern Kansas, USA. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020384.	1.4	14
12	Stress Controls Rupture Extent and Maximum Magnitude of Induced Earthquakes. Geophysical Research Letters, 2021, 48, e2020GL092148.	1.5	8
13	Evidence for Latent Crustal Fluid Injection Transients in Southern California From Longâ€Duration Earthquake Swarms. Geophysical Research Letters, 2021, 48, e2021GL092465.	1.5	27
14	Robust Earthquake Early Warning at a Fraction of the Cost: ASTUTI Costa Rica. AGU Advances, 2021, 2, e2021AV000407.	2.3	17
15	The PLUM Earthquake Early Warning Algorithm: A Retrospective Case Study of West Coast, USA, Data. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021053.	1.4	14
16	<i>Erratum to</i> V S 30 and Dominant Site Frequency fd as Provisional Station ML Corrections dML in California. Bulletin of the Seismological Society of America, 2021, 111, 2881-2881.	1.1	0
17	Wastewater Disposal Has Not Significantly Altered the Regional Stress State in Southern Kansas. Seismological Research Letters, 2021, 92, 3516-3525.	0.8	1
18	Apparent earthquake rupture predictability. Geophysical Journal International, 2021, 225, 657-663.	1.0	8

#	Article	IF	CITATIONS
19	How Often Can Earthquake Early Warning Systems Alert Sites With Highâ€Intensity Ground Motion?. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB017718.	1.4	41
20	Activation of optimally and unfavourably oriented faults in a uniform local stress field during the 2011 Prague, Oklahoma, sequence. Geophysical Journal International, 2020, 222, 153-168.	1.0	18
21	Using a Largeâ€ <i>n</i> Seismic Array to Explore the Robustness of Spectral Estimations. Geophysical Research Letters, 2020, 47, e2020GL089342.	1.5	16
22	Minimal Clustering of Injection-Induced Earthquakes Observed with a Large-n Seismic Array. Bulletin of the Seismological Society of America, 2020, 110, 2005-2017.	1.1	18
23	3D fault architecture controls the dynamism of earthquake swarms. Science, 2020, 368, 1357-1361.	6.0	117
24	Real-Time Performance of the PLUM Earthquake Early Warning Method during the 2019 MÂ6.4 and 7.1 Ridgecrest, California, Earthquakes. Bulletin of the Seismological Society of America, 2020, 110, 1887-1903.	1.1	20
25	Near-Field Ground Motions from the July 2019 Ridgecrest, California, Earthquake Sequence. Seismological Research Letters, 2020, 91, 1542-1555.	0.8	13
26	The U.S. Geological Survey's Rapid Seismic Array Deployment for the 2019 Ridgecrest Earthquake Sequence. Seismological Research Letters, 2020, 91, 1952-1960.	0.8	24
27	Determining Moho Depth beneath Sedimentary Basins Using Regional Pn Multiples. Bulletin of the Seismological Society of America, 2019, 109, .	1.1	1
28	Depth Determination of the 2010 El Mayor ucapah Earthquake Sequence (M ≥ 4.0). Journal of Geophysical Research: Solid Earth, 2019, 124, 6801-6814.	1.4	2
29	Event Detection Performance of the PLUM Earthquake Early Warning Algorithm in Southern California. Bulletin of the Seismological Society of America, 2019, 109, 1524-1541.	1.1	28
30	Peak Ground Displacement Saturates Exactly When Expected: Implications for Earthquake Early Warning. Journal of Geophysical Research: Solid Earth, 2019, 124, 4642-4653.	1.4	55
31	Delayed Dynamic Triggering of Disposalâ€Induced Earthquakes Observed by a Dense Array in Northern Oklahoma. Journal of Geophysical Research: Solid Earth, 2019, 124, 3766-3781.	1.4	18
32	Slowâ€Growing and Extendedâ€Duration Seismicity Swarms: Reactivating Joints or Foliations in the Cahuilla Valley Pluton, Central Peninsular Ranges, Southern California. Journal of Geophysical Research: Solid Earth, 2019, 124, 3933-3949.	1.4	13
33	The Limits of Earthquake Early Warning Accuracy and Best Alerting Strategy. Scientific Reports, 2019, 9, 2478.	1.6	92
34	How low should we go when warning for earthquakes?. Science, 2019, 366, 957-958.	6.0	38
35	The limits of earthquake early warning: Timeliness of ground motion estimates. Science Advances, 2018, 4, eaaq0504.	4.7	103
36	2018 Oneâ€Year Seismic Hazard Forecast for the Central and Eastern United States from Induced and Natural Earthquakes. Seismological Research Letters, 2018, 89, 1049-1061.	0.8	71

#	Article	IF	CITATIONS
37	Earthquake Early Warning ShakeAlert System: West Coast Wide Production Prototype. Seismological Research Letters, 2018, 89, 99-107.	0.8	74
38	Induced Earthquake Families Reveal Distinctive Evolutionary Patterns Near Disposal Wells. Journal of Geophysical Research: Solid Earth, 2018, 123, 8045-8055.	1.4	27
39	Earthquake Early Warning ShakeAlert System: Testing and Certification Platform. Seismological Research Letters, 2018, 89, 108-117.	0.8	53
40	To catch a quake. Nature Communications, 2018, 9, 2508.	5.8	15
41	Lessons from Mexico's Earthquake Early Warning System. Eos, 2018, 99, .	0.1	34
42	Solving for Source Parameters Using Nested Array Data: A Case Study from the Canterbury, New Zealand Earthquake Sequence. Pure and Applied Geophysics, 2017, 174, 875-893.	0.8	13
43	Low stress drops observed for aftershocks of the 2011 <i>M</i> _{<i>w</i>} 5.7 Prague, Oklahoma, earthquake. Journal of Geophysical Research: Solid Earth, 2017, 122, 3813-3834.	1.4	56
44	Source Spectral Properties of Small to Moderate Earthquakes in Southern Kansas. Journal of Geophysical Research: Solid Earth, 2017, 122, 8021-8034.	1.4	44
45	Strong SH â€toâ€Love Wave Scattering off the Southern California Continental Borderland. Geophysical Research Letters, 2017, 44, 10,208.	1.5	11
46	Delayed Seismicity Rate Changes Controlled by Static Stress Transfer. Journal of Geophysical Research: Solid Earth, 2017, 122, 7951-7965.	1.4	18
47	Aftershocks driven by afterslip and fluid pressure sweeping through a faultâ€fracture mesh. Geophysical Research Letters, 2017, 44, 8260-8267.	1.5	106
48	Quake warnings, seismic culture. Science, 2017, 358, 1111-1111.	6.0	32
49	Poroelastic Properties of the Arbuckle Group in Oklahoma Derived from Well Fluid Level Response to the 3 September 2016 <i>M</i> _w Â5.8 Pawnee and 7 November 2016 <i>M</i> _w Â5.0 Cushing Earthquakes. Seismological Research Letters, 2017, 88, 963-970.	0.8	29
50	3-DP- and S-wave velocity structure and low-frequency earthquake locations in the Parkfield, California region. Geophysical Journal International, 2016, 206, 1574-1585.	1.0	19
51	Alongâ€Strike Variations in Fault Frictional Properties along the San Andreas Fault near Cholame, California, from Joint Earthquake and Lowâ€Frequency Earthquake Relocations. Bulletin of the Seismological Society of America, 2016, 106, 319-326.	1.1	2
52	The Red Atrapa Sismos (Quake-Catcher Network in Mexico): Assessing Performance during Large and Damaging Earthquakes. Seismological Research Letters, 2015, 86, 848-855.	0.8	2
53	Stress- and structure-controlled anisotropy in a region of complex faulting—Yuha Desert, California. Geophysical Journal International, 2015, 202, 1109-1121.	1.0	10
54	Improved Rapid Magnitude Estimation for a Communityâ€Based, Lowâ€Cost MEMS Accelerometer Network. Bulletin of the Seismological Society of America, 2015, 105, 1314-1323.	1.1	9

#	Article	lF	Citations
55	A century of oil-field operations and earthquakes in the greater Los Angeles Basin, southern California. The Leading Edge, 2015, 34, 650-656.	0.4	11
56	On the Reliability of Quake-Catcher Network Earthquake Detections. Seismological Research Letters, 2015, 86, 856-869.	0.8	9
57	Strong-Motion Observations of the MÂ7.8 Gorkha, Nepal, Earthquake Sequence and Development of the N-SHAKE Strong-Motion Network. Seismological Research Letters, 2015, 86, 1533-1539.	0.8	53
58	Using a modified time-reverse imaging technique to locate low-frequency earthquakes on the San Andreas Fault near Cholame, California. Geophysical Journal International, 2015, 203, 1207-1226.	1.0	5
59	Investigation of the high-frequency attenuation parameter, \hat{I}° (kappa), from aftershocks of the 2010 Mw 8.8 Maule, Chile earthquake. Geophysical Journal International, 2015, 200, 200-215.	1.0	11
60	Rapid Earthquake Characterization Using MEMS Accelerometers and Volunteer Hosts Following the M 7.2 Darfield, New Zealand, Earthquake. Bulletin of the Seismological Society of America, 2014, 104, 184-192.	1.1	42
61	Performance of Several Low-Cost Accelerometers. Seismological Research Letters, 2014, 85, 147-158.	0.8	89
62	Observations of static Coulomb stress triggering of the November 2011 <i>M</i> 5.7 Oklahoma earthquake sequence. Journal of Geophysical Research: Solid Earth, 2014, 119, 1904-1923.	1.4	165
63	On the powerful use of simulations in the Quake-Catcher Network to efficiently position low-cost earthquake sensors. Future Generation Computer Systems, 2013, 29, 2128-2142.	4.9	5
64	Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 earthquake sequence. Geology, 2013, 41, 699-702.	2.0	611
65	Semiautomated tremor detection using a combined crossâ€correlation and neural network approach. Journal of Geophysical Research: Solid Earth, 2013, 118, 4827-4846.	1.4	6
66	Sensitivity Analysis of FEMA <i>HAZUS</i> Earthquake Model: Case Study from King County, Washington. Natural Hazards Review, 2013, 14, 134-146.	0.8	19
67	Infrequent Triggering of Tremor along the San Jacinto Fault near Anza, California. Bulletin of the Seismological Society of America, 2013, 103, 2482-2497.	1.1	22
68	Aftershocks of the 2010 <i>M</i> _{<i>w</i>} 7.2 El Mayor ucapah earthquake reveal complex faulting in the Yuha Desert, California. Journal of Geophysical Research: Solid Earth, 2013, 118, 6146-6164.	1.4	25
69	Comparison between low-cost and traditional MEMS accelerometers: a case study from the M7.1 Darfield, New Zealand, aftershock deployment. Annals of Geophysics, 2012, 54, .	0.5	25
70	Seismic structures of the Calico fault zone inferred from local earthquake travel time modelling. Geophysical Journal International, 2011, 186, 760-770.	1.0	52
71	Spatio-temporal evolution of Yellowstone deformation between 1992 and 2009 from InSAR and GPS observations. Bulletin of Volcanology, 2011, 73, 1407-1419.	1.1	17
72	The Quake-Catcher Network Rapid Aftershock Mobilization Program Following the 2010 M 8.8 Maule, Chile Earthquake. Seismological Research Letters, 2011, 82, 526-532.	0.8	31

#	Article	IF	Citations
73	The Quake-Catcher Network: Citizen Science Expanding Seismic Horizons. Seismological Research Letters, 2009, 80, 26-30.	0.8	166
74	Seismic and geodetic evidence for extensive, long-lived fault damage zones. Geology, 2009, 37, 315-318.	2.0	222
75	A novel strong-motion seismic network for community participation in earthquake monitoring. IEEE Instrumentation and Measurement Magazine, 2009, 12, 8-15.	1.2	62
76	Seismic velocity variations on the San Andreas fault caused by the 2004 M6 Parkfield Earthquake and their implications. Earth, Planets and Space, 2007, 59, 21-31.	0.9	35
77	Comment on "Tidal synchronicity of the 26 December 2004 Sumatran earthquake and its aftershocks― by R. G. M. Crockett et al Geophysical Research Letters, 2007, 34, .	1.5	8
78	Infrasound events detected with the Southern California Seismic Network. Geophysical Research Letters, 2006, 33, .	1.5	22
79	Seismic Evidence for Rock Damage and Healing on the San Andreas Fault Associated with the 2004 M 6.0 Parkfield Earthquake. Bulletin of the Seismological Society of America, 2006, 96, S349-S363.	1.1	159
80	Anisotropy in the Shallow Crust Observed around the San Andreas Fault Before and After the 2004 M 6.0 Parkfield Earthquake. Bulletin of the Seismological Society of America, 2006, 96, S364-S375.	1.1	59
81	Earth Tides Can Trigger Shallow Thrust Fault Earthquakes. Science, 2004, 306, 1164-1166.	6.0	298
82	Low-velocity damaged structure of the San Andreas Fault at Parkfield from fault zone trapped waves. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	99
83	Multiple-fault rupture of theM7.1 Hector Mine, California, earthquake from fault zone trapped waves. Journal of Geophysical Research, 2003, 108, .	3.3	20
84	Near-fault anisotropy following the Hector Mine earthquake. Journal of Geophysical Research, 2003, 108, .	3.3	78
85	Postseismic Fault Healing on the Rupture Zone of the 1999 M 7.1 Hector Mine, California, Earthquake. Bulletin of the Seismological Society of America, 2003, 93, 854-869.	1.1	97
86	Earthquake source characterization by the isochrone back projection method using near-source ground motions. Geophysical Journal International, 0, 182, 1058-1072.	1.0	9
87	The LArgeâ€n Seismic Survey in Oklahoma (LASSO) Experiment. Seismological Research Letters, 0, , .	0.8	14
88	Characterizing Stress Orientations in Southern Kansas. Bulletin of the Seismological Society of America, 0, , .	1.1	4
89	A Framework for Evaluating Earthquake Early Warning for an Infrastructure Network: An Idealized Case Study of a Northern California Rail System. Frontiers in Earth Science, 0, 9, .	0.8	9