Jennifer A Benanti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8370596/publications.pdf

Version: 2024-02-01

623734 752698 23 743 14 20 citations g-index h-index papers 25 25 25 1116 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cip1 tunes cell cycle arrest duration upon calcineurin activation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	1
2	Abstract 2982: Utility of S. cerevisiae genetic interactions in the mechanistic validation and therapeutic potential of highly conserved targets for drug discovery., 2021,,.		0
3	Ubc1 turnover contributes to the spindle assembly checkpoint in <i>Saccharomyces cerevisiae</i> Genes, Genomes, Genetics, 2021, 11, .	1.8	O
4	The coordinate actions of calcineurin and Hog1 mediate the stress response through multiple nodes of the cell cycle network. PLoS Genetics, 2020, 16, e1008600.	3.5	12
5	An order-to-disorder structural switch activates the FoxM1 transcription factor. ELife, 2019, 8, .	6.0	34
6	A balance of deubiquitinating enzymes controls cell cycle entry. Molecular Biology of the Cell, 2018, 29, 2821-2834.	2.1	11
7	Levels of Ycg1 Limit Condensin Function during the Cell Cycle. PLoS Genetics, 2016, 12, e1006216.	3.5	13
8	Create, activate, destroy, repeat: Cdk1 controls proliferation by limiting transcription factor activity. Current Genetics, 2016, 62, 271-276.	1.7	22
9	Hcm1 integrates signals from Cdk1 and calcineurin to control cell proliferation. Molecular Biology of the Cell, 2015, 26, 3570-3577.	2.1	16
10	Rad53 Downregulates Mitotic Gene Transcription by Inhibiting the Transcriptional Activator Ndd1. Molecular and Cellular Biology, 2014, 34, 725-738.	2.3	14
11	Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression. EMBO Journal, 2014, 33, 1044-1060.	7.8	36
12	F-Box Protein Specificity for G1 Cyclins Is Dictated by Subcellular Localization. PLoS Genetics, 2012, 8, e1002851.	3.5	44
13	Coordination of cell growth and division by the ubiquitin–proteasome system. Seminars in Cell and Developmental Biology, 2012, 23, 492-498.	5.0	41
14	Functionally Distinct Isoforms of Cik1 Are Differentially Regulated by APC/C-Mediated Proteolysis. Molecular Cell, 2009, 33, 581-590.	9.7	30
15	Cdc20, an Activator at Last. Molecular Cell, 2008, 32, 460-461.	9.7	4
16	Sensitivity of Yeast Strains with Long G-Tails to Levels of Telomere-Bound Telomerase. PLoS Genetics, 2007, 3, e105.	3.5	43
17	Epigenetic Down-Regulation of ARF Expression Is a Selection Step in Immortalization of Human Fibroblasts by c-Myc. Molecular Cancer Research, 2007, 5, 1181-1189.	3.4	40
18	A proteomic screen reveals SCFGrr1 targets that regulate the glycolytic–gluconeogenic switch. Nature Cell Biology, 2007, 9, 1184-1191.	10.3	77

#	Article	IF	CITATIONS
19	Normal Human Fibroblasts Are Resistant to RAS-Induced Senescence. Molecular and Cellular Biology, 2004, 24, 2842-2852.	2.3	100
20	The Normal Response to RAS: Senescence or Transformation?. Cell Cycle, 2004, 3, 713-715.	2.6	30
21	The normal response to RAS: senescence or transformation?. Cell Cycle, 2004, 3, 715-7.	2.6	21
22	Induction of Extracellular Matrix-Remodeling Genes by the Senescence-Associated Protein APA-1. Molecular and Cellular Biology, 2002, 22, 7385-7397.	2.3	53
23	The G ₂ Checkpoint Is Maintained by Redundant Pathways. Molecular and Cellular Biology, 1999, 19, 5872-5881.	2.3	101