Changrong Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8369984/publications.pdf

Version: 2024-02-01

218677 289244 2,038 107 26 40 citations g-index h-index papers 107 107 107 1222 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Giant strain with ultra-low hysteresis by tailoring relaxor temperature and PNRs dynamic in BNT-based lead-free piezoelectric ceramics. Ceramics International, 2022, 48, 13125-13133.	4.8	15
2	Enhanced energy storage density of antiferroelectric AgNbO3-based ceramics by Bi/Ta modification at A/B sites. Journal of Materials Science: Materials in Electronics, 2022, 33, 3081-3090.	2.2	4
3	Incipient piezoelectricity boosts large strain with excellent thermal stability in (Bi0.5Na0.5)TiO3-based ceramics. Journal of Materials Science: Materials in Electronics, 2022, 33, 6121-6130.	2.2	7
4	Enhanced Visible Photocatalytic Hydrogen Evolution of KN-Based Semiconducting Ferroelectrics <i>via</i> Band-Gap Engineering and High-Field Poling. ACS Applied Materials & Diterfaces, 2022, 14, 8916-8930.	8.0	18
5	Enhanced field-induced-strain by maximizing reversible domain switching contribution via eliminating negative strain in (Na0.5Bi0.5)TiO3-based ceramics. Journal of Materials Science: Materials in Electronics, 2022, 33, 6802.	2.2	3
6	Visible-light photocatalytic hydrogen production in a narrow-bandgap semiconducting La/Ni-modified KNbO ₃ ferroelectric and further enhancement <i>via</i> high-field poling. Journal of Materials Chemistry A, 2022, 10, 7238-7250.	10.3	18
7	Giant electric field-induced strain with low hysteresis in Bi0.5Na0.5TiO3-xSr0.7Ca0.3TiO3 lead-free piezoceramics. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	3
8	Achieving Ultrahigh Photocurrent Density of Mg/Mn-Modified KNbO ₃ Ferroelectric Semiconductors by Bandgap Engineering and Polarization Maintenance. Chemistry of Materials, 2022, 34, 4274-4285.	6.7	15
9	Large electrostrictive coefficient with optimized Electro-Strain in BNT-based ceramics with ergodic state. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 283, 115828.	3.5	5
10	Probing the in-time piezoelectric responses and depolarization behaviors related to ferroelectric-relaxor transition in BiFeO3–BaTiO3 ceramics by in-situ process. Journal of Materials Science: Materials in Electronics, 2021, 32, 1197-1203.	2.2	8
11	Regulating the Structural, Transmittance, Ferroelectric, and Energy Storage Properties of K0.5Na0.5NbO3 Ceramics Using Sr(Yb0.5Nb0.5)O3. Journal of Electronic Materials, 2021, 50, 968-977.	2.2	14
12	Crystal structures and electrical properties of Sr/Feâ€modified KNbO ₃ ferroelectric semiconductors with narrow bandgap. Journal of the American Ceramic Society, 2021, 104, 2181-2190.	3.8	10
13	Significantly enhanced energy harvesting based on Ba(Ti,Sn)O3 and P(VDF-CTFE) composite by piezoelectric and triboelectric hybrid. Journal of Materials Science: Materials in Electronics, 2021, 32, 2422-2431.	2.2	2
14	Semiconducting tailoring and electrical properties of A-site Co substituted Bi0·5Na0·5TiO3-δ ferroelectric ceramics. Materials Chemistry and Physics, 2021, 260, 124100.	4.0	9
15	BiO·5NaO·5TiO3–Sr0.85BiO·1TiO3 ceramics with high energy storage properties and extremely fast discharge speed via regulating relaxation temperature. Ceramics International, 2021, 47, 11294-11303.	4.8	27
16	High piezoelectric properties of 0.82(Bi0.5Na0.5)TiO3–0.18(Bi0.5K0.5)TiO3 lead-free ceramics modified by (Mn1/3Nb2/3)4+ complex ions. Bulletin of Materials Science, 2021, 44, 1.	1.7	2
17	Enhancement of the up-conversion luminescence performance of Ho3+-doped 0.825K0.5Na0.5NbO3-0.175Sr(Yb0.5Nb0.5)O3 transparent ceramics by polarization. Bulletin of Materials Science, 2021, 44, 1.	1.7	11
18	Improvement of dielectric properties and energy storage performance in sandwich-structured P(VDF-CTFE) composites with low content of GO nanosheets. Nanotechnology, 2021, 32, 425702.	2.6	7

#	Article	IF	CITATIONS
19	Nonergodic–ergodic relaxor transition and enhanced piezoelectric properties in B-site complex ions substitution 0.93Bi0.5Na0.5TiO3–0.07BaTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2021, 32, 24308-24319.	2.2	4
20	Relaxor ferroelectric Bi0.5Na0.5TiO3–Sr0.7Nd0.2TiO3 ceramics with high energy storage density and excellent stability under a low electric field. Journal of Physics and Chemistry of Solids, 2021, 157, 110209.	4.0	15
21	A new strategy to realize high energy storage properties and ultrafast discharge speed in Sr0.7Bi0.2TiO3-based relaxor ferroelectric ceramic. Journal of Alloys and Compounds, 2021, 883, 160855.	5.5	26
22	High-field polarization boosting visible-light photocatalytic H2 evolution of narrow-bandgap semiconducting (1 â°' x)KNbO3–xBa(Ni1/2Nb1/2)O3â°Î′ ferroelectric ceramics. New Journal of Chemistry, 2021, 45, 20296-20308.	2.8	1
23	Ultrahigh Energy Storage Density and Efficiency in Bi _{0.5} Na _{0.5} TiO ₃ -Based Ceramics via the Domain and Bandgap Engineering. ACS Applied Materials & Diterfaces, 2021, 13, 51218-51229.	8.0	83
24	Phase Transition, Large Strain and Energy Storage in Ferroelectric (Bi0.5Na0.5)TiO3-BaTiO3 Ceramics Tailored by (Mg1/3Nb2/3)4+ Complex Ions. Journal of Electronic Materials, 2020, 49, 1131-1141.	2.2	13
25	Impedance Spectroscopy and Photovoltaic Effect of Oxygen Defect Engineering on KNbO3 Ferroelectric Semiconductors. Journal of Electronic Materials, 2020, 49, 6165-6174.	2.2	10
26	Effects of CaHfO3 on the electrical properties of Bi0.49Na0.49Ca0.02TiO3 ferroelectric ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 16209-16219.	2.2	1
27	Optical and electrical properties of ferroelectric Bi0.5Na0.5TiO3-NiTiO3 semiconductor ceramics. Materials Science in Semiconductor Processing, 2020, 115, 105089.	4.0	21
28	Tailoring the Structure, Energy Storage, Strain, and Dielectric Properties of Bi0.5(Na0.82K0.18)0.5TiO3 Ceramics by $(Fe1/4Sc1/4Nb1/2)4+$ Multiple Complex Ions. Frontiers in Materials, 2020, 7, .	2.4	3
29	Optical and electrical properties of ferroelectric Ba Bi0.5-0.5Ag0.05-0.5Na0.45Ti1-Ni0.5Nb0.5O3 semiconductor ceramics. Materials Letters, 2020, 268, 127627.	2.6	5
30	Photocurrent and dielectric/ferroelectric properties of KNbO3–BaFeO3-Î′ ferroelectric semiconductors. Ceramics International, 2020, 46, 14567-14572.	4.8	26
31	Ultrahigh piezoelectricity in lead-free piezoceramics by synergistic design. Nano Energy, 2020, 76, 104944.	16.0	99
32	High energy storage efficiency and high electrostrictive coefficients in BNT–BS–xBT ferroelectric ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 5546-5553.	2.2	22
33	Influence of trace lithium addition on the structure and properties of K0.5Na0.5NbO3-based single crystals. Journal of Materials Science: Materials in Electronics, 2020, 31, 4857-4866.	2.2	6
34	Complex impedance spectroscopy of perovskite microwave dielectric ceramics with high dielectric constant. Journal of the American Ceramic Society, 2019, 102, 1852-1865.	3.8	23
35	Electrical microstructures of CaTiO3-Bi0.5Na0.5TiO3 microwave ceramics with high permittivity (εmax) Tj ETQq	1 1 0.784 5.5	314 rgBT /Ov 12
36	The effect of artificial stress on structure, electrical and mechanical properties of Sr2+ doped BNTâ€"BT lead-free piezoceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 21398-21405.	2.2	6

#	Article	IF	CITATIONS
37	Low electric field-induced strain and large improvement in energy density of (Lu0.5Nb0.5)4+ complex-ions doped BNT–BT ceramics. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	31
38	An intermediate metastable ferroelectric state induced giant functional responses in Bi _{0.5} Na _{0.5} TiO ₃ ceramics. Journal of Materials Chemistry C, 2019, 7, 8255-8260.	5 . 5	9
39	Concurrent anomalies in electric field-temperature dependence of direct/converse piezoelectric response in Bi0.5Na0.5TiO3-BaTiO3. Journal of Alloys and Compounds, 2019, 793, 9-15.	5.5	0
40	The Modification of (Nd0.5Ta0.5)4+ Complex-Ions on Structure and Electrical Properties of Bi0.5Na0.5TiO3-BaTiO3 Ceramics. Materials Research, 2019, 22, .	1.3	4
41	Enhanced electrical properties in donor–acceptor co-doped Ba(Ti0.92Sn0.08)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 8712-8720.	2.2	2
42	Dielectric behaviors and relaxor characteristics in Bi0.5Na0.5TiO3-BaTiO3 ceramics. Journal of Advanced Dielectrics, 2019, 09, 1950038.	2.4	4
43	Microwave Dielectric Properties of Na5RE(MoO4)4 (RE = La, Gd, Dy, Er) Ceramics with a Low Sintering Temperature. Journal of Electronic Materials, 2019, 48, 656-661.	2.2	5
44	Temperature-driven phase transitions and enhanced piezoelectric responses in Ba(Ti0.92Sn0.08)O3 lead-free ceramic. Ceramics International, 2019, 45, 4461-4466.	4.8	5
45	The evolution of phase structure, dielectric, strain, and energy storage density of complex-ions (Sr1/3Nb2/3)4+ doped 0.82Bi0.5Na0.5TiO3-0.18Bi0.5K0.5TiO3 ceramics. Journal of Physics and Chemistry of Solids, 2019, 126, 287-293.	4.0	21
46	Unusual dynamic polarization response and scaling behaviors in Bi1/2Na1/2TiO3 ceramics. Materials Research Bulletin, 2019, 109, 134-140.	5.2	6
47	Enhanced piezoelectric properties by reducing leakage current in Co modified 0.7BiFeO3-0.3BaTiO3 ceramics. Ceramics International, 2018, 44, 8955-8962.	4.8	42
48	Dual relaxation behaviors and large electrostrictive properties of Bi0.5Na0.5TiO3–Sr0.85Bi0.1TiO3 ceramics. Journal of Materials Science, 2018, 53, 8844-8854.	3.7	27
49	Comparative studies on structure, dielectric, strain and energy storage properties of (Bi0.5Na0.5)0.94Ba0.06Ti0.965(Mg1/3Nb2/3)0.035O3 lead-free ceramics prepared by traditional and two-step sintering method. Journal of Materials Science: Materials in Electronics, 2018, 29, 5349-5355.	2.2	7
50	Simultaneously enhanced piezoelectric properties and depolarization temperature in calcium doped BiFeO3-BaTiO3 ceramics. Journal of Alloys and Compounds, 2018, 748, 758-765.	5.5	23
51	Enhanced piezoelectric response and high-temperature sensitivity by site-selected doping of BiFeO3-BaTiO3 ceramics. Journal of the European Ceramic Society, 2018, 38, 1356-1366.	5.7	65
52	Microwave dielectric properties of (1-x) BiVO4–xLn2/3MoO4 (Ln=Er, Sm, Nd, la) ceramics with low sintering temperatures. Journal of Electroceramics, 2018, 40, 99-106.	2.0	2
53	Ferroelectricâ€quasiferroelectricâ€ergodic relaxor transition and multifunctional electrical properties in Bi _{0.5} Na _{0.5} TiO ₃ â€based ceramics. Journal of the American Ceramic Society, 2018, 101, 1554-1565.	3.8	51
54	Microwave dielectric properties of Bi(Sc1/3Mo2/3)O4 ceramics for LTCC applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 1817-1822.	2.2	10

#	Article	IF	Citations
55	Microwave dielectric properties of Sr0.7Ce0.2TiO3–Sr(Mg1/3Nb2/3)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2018, 29, 2668-2675.	2.2	3
56	Excellent optical, dielectric, and ferroelectric properties of Sr(In0.5Nb0.5)O3 modified K0.5Na0.5NbO3 lead-free transparent ceramics. Journal of Materials Science: Materials in Electronics, 2018, 29, 19123-19129.	2.2	15
57	Highâ€energy storage and temperature stable dielectrics properties of leadâ€free BiScO ₃ –BaTiO ₃ – <i>x</i> (Bi _{0.5} Na _{0.5})TiO ₃ 3 ceramics. IET Nanodielectrics, 2018, 1, 143-148.	4.1	2
58	Enhanced real-time high temperature piezoelectric responses and ferroelectric scaling behaviors of MgO-doped 0.7BiFeO3-0.3BaTiO3 ceramics. Ceramics International, 2018, 44, 14439-14445.	4.8	24
59	Effects of thermal and electrical histories on structure and dielectric behaviors of (Li 0.5 Nd 0.5) 2+-modified (Bi 0.5 Na 0.5)TiO 3 -BaTiO 3 ceramics. Journal of Materiomics, 2017, 3, 121-129.	5 . 7	9
60	Microstructures and microwave dielectric properties of (Ba1â^'xSrx)4(Sm0.4Nd0.6)28/3Ti18O54 solid solutions. Journal of Advanced Ceramics, 2017, 6, 50-58.	17.4	16
61	Enhanced piezoelectricity and high-temperature sensitivity of Zn-modified BF-BT ceramics by in situ and ex situ measuring. Ceramics International, 2017, 43, 3734-3740.	4.8	31
62	Observation of multiple dielectric relaxations in BaTiO3-Bi(Li1/3Ti2/3)O3 ceramics. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	4
63	Effect of domains configuration on crystal structure in ferroelectric ceramics as revealed by XRD and dielectric spectrum. Bulletin of Materials Science, 2017, 40, 1159-1163.	1.7	0
64	Effects of Bi3+ substitution on microwave dielectric properties of (Ce1â^'x Bi x)0.2Sr0.7TiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 9941-9949.	2.2	4
65	A new insight into structural complexity in ferroelectric ceramics. Journal of Advanced Ceramics, 2017, 6, 262-268.	17.4	6
66	Enhanced energy storage properties of Bi0.5Li0.5TiO3 modified Sr0.1Bi0.45Na0.45TiO3 based ceramics. Journal of Advanced Ceramics, 2016, 5, 219-224.	17.4	6
67	High piezoelectricity associated with crossover from nonergodicity to ergodicity in modified Bi0.5Na0.5TiO3 relaxor ferroelectrics. Journal of Electroceramics, 2016, 37, 23-28.	2.0	2
68	Low-Temperature Sintering and Microwave Dielectric Properties of Bi0.9Ln0.05Li0.05V0.9Mo0.1O4 (LnÂ=ÂSm, Nd and La) Ceramics. Journal of Electronic Materials, 2016, 45, 4302-4308.	2.2	2
69	Effect of poling on polarization alignment, dielectric behavior, and piezoelectricity development in polycrystalline BiFeO ₃ –BaTiO ₃ ceramics. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 52-59.	1.8	15
70	Tailoring antiferroelectricity with high energy-storage properties in Bi0.5Na0.5TiO3–BaTiO3 ceramics by modulating Bi/Na ratio. Journal of Materials Science: Materials in Electronics, 2016, 27, 10810-10815.	2.2	34
71	Normal-to-relaxor ferroelectric phase transition and electrical properties in Nb-modified 0.72BiFeO3-0.28BaTiO3 ceramics. Journal of Electroceramics, 2016, 36, 1-7.	2.0	28
72	High Piezoelectric Response in (Li0.5Sm0.5)2+-Modified 0.93Bi0.5Na0.5TiO3-0.07BaTiO3 Near the Nonergodic–Ergodic RelaxorÂTransition. Journal of Electronic Materials, 2016, 45, 2967-2973.	2.2	6

#	Article	IF	CITATIONS
73	Energy storage properties and electrical behavior of lead-free (1Ââ^'Âx) Ba0.04Bi0.48Na0.48TiO3â€"xSrZrO3 ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 3948-3956.	2.2	40
74	Electrical Properties of Sr _{l–} cscp>i _{di>xla€"} cscp>i _{ci>xli>} fe _{0.6} Sn _{0.4} <td>b>£ sub∶</td> <td>>35/sub></td>	b> £ sub∶	>3 5 /sub>
75	Unique high temperature polarization stability state in Bi0.5Na0.5TiO3-BaTiO3system at the morphotropic phase boundary. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1785-1788.	1.8	0
76	Effect of Reoriented Nanodomains on Crystal Structure and Piezoelectric Properties of Polycrystalline Ferroelectric Ceramics. Journal of Electronic Materials, 2015, 44, 3843-3848.	2.2	3
77	Correlation between temperature-dependent permittivity dispersion and depolarization behaviours in Zr4+-modified BiFeO3–BaTiO3 piezoelectric ceramics. Bulletin of Materials Science, 2015, 38, 1737-1741.	1.7	3
78	Microstructures and Microwave Dielectric Properties of Low-Temperature Fired Ca0.8Sr0.2TiO3-Li0.5Sm0.5TiO3 Ceramics with Bi2O3-2B2O3 Addition. Journal of Electronic Materials, 2015, 44, 263-270.	2.2	7
79	Microstructures and energy storage properties of Mn-doped 0.97Bi0.47Na0.47Ba0.06TiO3‰0.03K0.5Na0.5NbO3 lead-free antiferroelectric ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 8793-8797.	2.2	15
80	Unusual relaxor–normal ferroelectric crossover in Cu-doped BiFeO3–BaTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 3610-3614.	2.2	5
81	Temperature stability of sodium-doped BiFeO3–BaTiO3 piezoelectric ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 9336-9341.	2.2	15
82	Effect of Excess Li ⁺ on Microwave Dielectric Properties of Ca _{0.16} Sr _{0.04} Li _{0.4} Nd _{0.4} TiO ₃ Ceramics. International Journal of Applied Ceramic Technology, 2015, 12, E55.	2.1	4
83	Microstructures and dielectric properties of (1â^'x)SrTiO3â€"xCa0.61Nd0.26TiO3 ceramic system at microwave frequencies. Journal of Materials Science: Materials in Electronics, 2015, 26, 128-133.	2.2	13
84	Effect of sintering temperature on structure and dielectric behavior of 0.95(Bi0.5Na0.5)0.97(Li0.5Nd0.5)0.03TiO3–0.05BaTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25, 4983-4991.	2.2	3
85	Origin of high piezoelectric activity in perovskite ferroelectric ceramics. Applied Physics Letters, 2014, 104, .	3.3	27
86	The effect of composite (Li0.5Nd0.5)2+ ions substitution on microstructure, dielectric behavior and electrical properties of 0.95Bi0.5Na0.5TiO3–0.05BaTiO3 ceramics. Ceramics International, 2014, 40, 10431-10439.	4.8	7
87	Piezoelectric and ferroelectric properties of Ga modified BiFeO3–BaTiO3 lead-free ceramics with high Curie temperature. Journal of Materials Science: Materials in Electronics, 2014, 25, 196-201.	2.2	33
88	Microstructures and electrical properties of Sr0.6Bi0.4Fe0.6Sn0.4O3–BaCoII 0.02CoIII 0.04Bi0.94O3 thick-film thermistors with low room-temperature resistivity. Journal of Materials Science: Materials in Electronics, 2014, 25, 3967-3976.	2.2	1
89	Silver Coâ€Firable Li ₂ ZnTi ₃ O ₈ Microwave Dielectric Ceramics with <scp>LZB</scp> Glass Additive and TiO ₂ Dopant. International Journal of Applied Ceramic Technology, 2013, 10, 492-501.	2.1	40
90	Effect of sintering temperature on microstructure and piezoelectric properties of Pb-free BiFeO3–BaTiO3 ceramics in the composition range of large BiFeO3 concentrations. Journal of Electroceramics, 2013, 31, 15-20.	2.0	9

#	Article	IF	CITATIONS
91	Structural, ferroelectric and piezoelectric properties of Mn-modified BiFeO3–BaTiO3 high-temperature ceramics. Journal of Materials Science: Materials in Electronics, 2013, 24, 3952-3957.	2.2	32
92	Effects of CuO doping on the structure and properties lead-free KNN-LS piezoelectric ceramics. Journal of Materials Science: Materials in Electronics, 2013, 24, 2469-2472.	2.2	16
93	Effect of Zr4+ substitution on thermal stability and electrical properties of high temperature BiFe0.99Al0.01O3–BaTi1ⰒxZrxO3 ceramics. Journal of Alloys and Compounds, 2013, 567, 110-114.	5.5	29
94	Microstructure, dielectric and piezoelectric properties of lead-free Bi O·5 Na O·5 TiO 3  â^'Bi O·5 K O·5 TiO  â^'BiMnO 3 ceramics. Bulletin of Materials Science, 2013, 36, 265-270.	3.7	8
95	Effects of Sintering Temperature on Structure and Properties of 0.997(KNN-LS-BF)-0.003V2O5 Lead-Free Piezoelectric Ceramics. Journal of Electronic Materials, 2013, 42, 458-462.	2.2	3
96	Structure, electrical properties of Bi(Fe, Co)O3–BaTiO3 piezoelectric ceramics with improved Curie temperature. Physica B: Condensed Matter, 2013, 410, 13-16.	2.7	24
97	Lead-free (Li, Na, K)(Nb, Sb)O3 piezoelectric ceramics: effect of Bi(Ni0.5Ti0.5)O3 modification and sintering temperature on microstructure and electrical properties. Journal of Materials Science, 2013, 48, 2997-3002.	3.7	7
98	Piezoelectric properties and temperature stabilities of Mn- and Cu-modified BiFeO3–BaTiO3 high temperature ceramics. Journal of the European Ceramic Society, 2013, 33, 1177-1183.	5.7	160
99	Dielectric, ferroelectric and piezoelectric properties of La-substituted BiFeO3–BaTiO3 ceramics. Ceramics International, 2013, 39, 4307-4311.	4.8	74
100	Remarkably Highâ€Temperature Stability of <scp><scp>Bi</scp></scp> Solid Solution with Nearâ€Zero Temperature Coefficient of Piezoelectric Properties. Journal of the American Ceramic Society, 2013, 96, 2252-2256.	> <i>x</i> 3.8	داsub>) <scp< td=""></scp<>
101	Dielectric, Ferroelectric, and Piezoelectric Properties of <scp><scp>Bi</scp></scp>	b _{3.8} <scp><</scp>	kန္မင္မာ>O
102	Microstructural and electrical properties of Na1/2Bi1/2TiO3–(Na1/4Bi3/4)(Mg1/4Ti3/4)O3 piezoelectric ceramics. Journal of Alloys and Compounds, 2012, 542, 17-21.	5.5	7
103	Remarkably high-temperature stable piezoelectric properties of Bi(Mg _{0.5} Ti _{0.5})O ₃ modified BiFeO ₃ –BaTiO ₃ ceramics. Applied Physics Letters, 2012, 101, 032901.	3.3	100
104	Dielectric and piezoelectric properties of YMnO3 modified Bi0.5Na0.5TiO3 lead-free piezoelectric ceramics. Journal of Materials Science: Materials in Electronics, 2010, 21, 364-367.	2.2	11
105	Dielectric and piezoelectric properties of bismuth-containing complex perovskite solid solution of Bi1/2Na1/2TiO3â°Bi(Mg2/3Nb1/3)O3. Journal of Materials Science, 2008, 43, 1016-1019.	3.7	49
106	Dielectric and piezoelectric properties of Bi0.5Na0.5TiO3–BaNb2O6 lead-free piezoelectric ceramics. Journal of Materials Science: Materials in Electronics, 2008, 19, 29-32.	2.2	27
107	Effect of B-site substitution of complex ions on dielectric and piezoelectric properties in (Bi1/2Na1/2)TiO3 piezoelectric ceramics. Materials Chemistry and Physics, 2008, 108, 413-416.	4.0	41