Brian D Zoltowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/836970/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Allosteric control of ACE2 peptidase domain dynamics. Organic and Biomolecular Chemistry, 2022, 20, 3605-3618.	1.5	3
2	Steric and Electronic Interactions at Gln154 in ZEITLUPE Induce Reorganization of the LOV Domain Dimer Interface. Biochemistry, 2021, 60, 95-103.	1.2	5
3	SSnet: A Deep Learning Approach for Protein-Ligand Interaction Prediction. International Journal of Molecular Sciences, 2021, 22, 1392.	1.8	29
4	Predicting Potential SARS-COV-2 Drugs—In Depth Drug Database Screening Using Deep Neural Network Framework SSnet, Classical Virtual Screening and Docking. International Journal of Molecular Sciences, 2021, 22, 1573.	1.8	27
5	Cryptochromes: Photochemical and structural insight into magnetoreception. Protein Science, 2021, 30, 1521-1534.	3.1	20
6	Dimeric allostery mechanism of the plant circadian clock photoreceptor ZEITLUPE. PLoS Computational Biology, 2021, 17, e1009168.	1.5	3
7	Deciphering the Allosteric Process of the <i>Phaeodactylum tricornutum</i> Aureochrome 1a LOV Domain. Journal of Physical Chemistry B, 2020, 124, 8960-8972.	1.2	22
8	A tail of CRY selectivity. Nature Chemical Biology, 2020, 16, 608-609.	3.9	1
9	Allosteric mechanism of the circadian protein Vivid resolved through Markov state model and machine learning analysis. PLoS Computational Biology, 2019, 15, e1006801.	1.5	19
10	Chemical and structural analysis of a photoactive vertebrate cryptochrome from pigeon. Proceedings of the United States of America, 2019, 116, 19449-19457.	3.3	91
11	Characterization of a Vivid Homolog in <i>Botrytis cinerea</i> . Photochemistry and Photobiology, 2018, 94, 985-993.	1.3	6
12	Revealing Hidden Conformational Space of LOV Protein VIVID Through Rigid Residue Scan Simulations. Scientific Reports, 2017, 7, 46626.	1.6	11
13	Kinetics of the LOV domain of ZEITLUPE determine its circadian function in Arabidopsis. ELife, 2017, 6, .	2.8	57
14	A Native Threonine Coordinates Ordered Water to Tune Light-Oxygen-Voltage (LOV) Domain Photocycle Kinetics and Osmotic Stress Signaling in Trichoderma reesei ENVOY. Journal of Biological Chemistry, 2016, 291, 14839-14850.	1.6	23
15	Optimized second-generation CRY2–CIB dimerizers and photoactivatable Cre recombinase. Nature Chemical Biology, 2016, 12, 425-430.	3.9	205
16	LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling. Frontiers in Molecular Biosciences, 2015, 2, 18.	1.6	166
17	Structural Biochemistry of a Fungal LOV Domain Photoreceptor Reveals an Evolutionarily Conserved Pathway Integrating Light and Oxidative Stress. Structure, 2015, 23, 116-125.	1.6	51
18	Resolving cryptic aspects of cryptochrome signaling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8811-8812.	3.3	9

BRIAN D ZOLTOWSKI

#	Article	IF	CITATIONS
19	Short LOV Proteins in Methylocystis Reveal Insight into LOV Domain Photocycle Mechanisms. PLoS ONE, 2015, 10, e0124874.	1.1	13
20	Structure and Function of the ZTL/FKF1/LKP2 Group Proteins in Arabidopsis. The Enzymes, 2014, 35, 213-239.	0.7	63
21	Zeitlupe Senses Blue-Light Fluence To Mediate Circadian Timing in <i>Arabidopsis thaliana</i> . Biochemistry, 2013, 52, 7150-7158.	1.2	45
22	Updated structure of Drosophila cryptochrome. Nature, 2013, 495, E3-E4.	13.7	83
23	Blue Light-Induced Dimerization of a Bacterial LOV–HTH DNA-Binding Protein. Biochemistry, 2013, 52, 6653-6661.	1.2	75
24	Biophysical Studies of Natural Photoreceptors: Application to Optogenetic Tool Optimization. Biophysical Journal, 2012, 102, 40a-41a.	0.2	1
25	Tripping the Light Fantastic: Blue-Light Photoreceptors as Examples of Environmentally Modulated Proteinâ~'Protein Interactions. Biochemistry, 2011, 50, 4-16.	1.2	144
26	Structure of full-length Drosophila cryptochrome. Nature, 2011, 480, 396-399.	13.7	144
27	Variations in Protein–Flavin Hydrogen Bonding in a Light, Oxygen, Voltage Domain Produce Non-Arrhenius Kinetics of Adduct Decay. Biochemistry, 2011, 50, 8771-8779.	1.2	45
28	Illuminating Solution Responses of a LOV Domain Protein with Photocoupled Small-Angle X-Ray Scattering. Journal of Molecular Biology, 2009, 393, 909-919.	2.0	43
29	Mechanism-based tuning of a LOV domain photoreceptor. Nature Chemical Biology, 2009, 5, 827-834.	3.9	238
30	Dimer formation in the blue light sensing protein Vivid. Biophysical Journal, 2009, 96, 524a.	0.2	1
31	Light Activation of the LOV Protein Vivid Generates a Rapidly Exchanging Dimer. Biochemistry, 2008, 47, 7012-7019.	1.2	157
32	Time-Resolved Dimerization of a PAS-LOV Protein Measured with Photocoupled Small Angle X-ray Scattering. Journal of the American Chemical Society, 2008, 130, 12226-12227.	6.6	41
33	Instabilities of Diffuse Interfaces. Mathematical Modelling of Natural Phenomena, 2008, 3, 108-125.	0.9	10
34	Conformational Switching in the Fungal Light Sensor Vivid. Science, 2007, 316, 1054-1057.	6.0	328
35	Evidence for the Existence of an Effective Interfacial Tension between Miscible Fluids. 2. Dodecyl Acrylateâ^'Poly(dodecyl acrylate) in a Spinning Drop Tensiometer. Langmuir, 2007, 23, 5522-5531.	1.6	63
36	Evidence for the Existence of an Effective Interfacial Tension between Miscible Fluids:Â Isobutyric Acidâ^'Water and 1-Butanolâ^'Water in a Spinning-Drop Tensiometer. Langmuir, 2006, 22, 2569-2577.	1.6	88

#	Article	IF	CITATIONS
37	Numerical simulations of convection induced by Korteweg stresses in miscible polymermonomer systems. Microgravity Science and Technology, 2005, 17, 8-12.	0.7	15
38	Measuring the Mutual Diffusion Coefficient for Dodecyl Acrylate in Low Molecular Weight Poly(dodecyl acrylate) with Laser Line Deflection (Wiener's Method) and the Fluorescence of Pyrene. Journal of Physical Chemistry B, 2005, 109, 11842-11849.	1.2	24