
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8368675/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Correlation of the Highest-Energy Cosmic Rays with Nearby Extragalactic Objects. Science, 2007, 318, 938-943.	12.6	647
2	Introducing the CTA concept. Astroparticle Physics, 2013, 43, 3-18.	4.3	504
3	Observation of the Suppression of the Flux of Cosmic Rays above <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>4</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mn>10</mml:mn><mml Physical Review Letters. 2008. 101. 061101.</mml </mml:msup></mml:math 	:mn>79 <td>ml:500 /mm</td>	ml:500 /mm
4	Pulsars as the sources of high energy cosmic ray positrons. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 025-025.	5.4	473
5	The origin of galactic cosmic rays. Astronomy and Astrophysics Review, 2013, 21, 1.	25.5	334
6	Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei. Astroparticle Physics, 2008, 29, 188-204.	4.3	305
7	Origin of the Positron Excess in Cosmic Rays. Physical Review Letters, 2009, 103, 051104.	7.8	255
8	Cosmic rays, radio halos and nonthermal X-ray emission in clusters of galaxies. Astroparticle Physics, 1999, 12, 169-183.	4.3	230
9	Clusters of Galaxies as Storage Room for Cosmic Rays. Astrophysical Journal, 1997, 487, 529-535.	4.5	225
10	Cosmological Magnetic Field Limits in an Inhomogeneous Universe. Astrophysical Journal, 1999, 514, L79-L82.	4.5	216
11	Spectral Breaks as a Signature of Cosmic Ray Induced Turbulence in the Galaxy. Physical Review Letters, 2012, 109, 061101.	7.8	190
12	Ultra–High-Energy Cosmic Rays from Young Neutron Star Winds. Astrophysical Journal, 2000, 533, L123-L126.	4.5	176
13	Probing the structure of space-time with cosmic rays. Physical Review D, 2000, 62, .	4.7	165
14	Upper limit on the cosmic-ray photon flux above 1019eV using the surface detector of the Pierre Auger Observatory. Astroparticle Physics, 2008, 29, 243-256.	4.3	161
15	On the role of injection in kinetic approaches to non-linear particle acceleration at non-relativistic shock waves. Monthly Notices of the Royal Astronomical Society, 2005, 361, 907-918.	4.4	153
16	Non-linear particle acceleration at non-relativistic shock waves in the presence of self-generated turbulence. Monthly Notices of the Royal Astronomical Society, 2006, 371, 1251-1258.	4.4	142
17	Upper Limit on the Diffuse Flux of Ultrahigh Energy Tau Neutrinos from the Pierre Auger Observatory. Physical Review Letters, 2008, 100, 211101.	7.8	141
18	High-Energy Antiprotons from Old Supernova Remnants. Physical Review Letters, 2009, 103, 081103.	7.8	141

#	Article	IF	CITATIONS
19	GeV GAMMA-RAY FLUX UPPER LIMITS FROM CLUSTERS OF GALAXIES. Astrophysical Journal Letters, 2010, 717, L71-L78.	8.3	140
20	Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. I: spectrum and chemical composition. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 010-010.	5.4	133
21	Clusters of galaxies and the diffuse gamma-ray background. Astroparticle Physics, 1998, 9, 227-246.	4.3	131
22	Alfvénic reacceleration of relativistic particles in galaxy clusters: MHD waves, leptons and hadrons. Monthly Notices of the Royal Astronomical Society, 2004, 350, 1174-1194.	4.4	130
23	A kinetic approach to cosmic-ray-induced streaming instability at supernova shocks. Monthly Notices of the Royal Astronomical Society, 2009, 392, 1591-1600.	4.4	128
24	A dip in the UHECR spectrum and the transition from galactic to extragalactic cosmic rays. Astroparticle Physics, 2007, 27, 76-91.	4.3	126
25	Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. II: anisotropy. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 011-011.	5.4	126
26	Nonthermal Radiation from Clusters of Galaxies: The Role of Merger Shocks in Particle Acceleration. Astrophysical Journal, 2003, 583, 695-705.	4.5	120
27	A semi-analytical approach to non-linear shock acceleration. Astroparticle Physics, 2002, 16, 429-439.	4.3	117
28	Gamma rays from molecular clouds. Astrophysics and Space Science, 2007, 309, 365-371.	1.4	110
29	Signatures of topological defects. Physical Review D, 1998, 58, .	4.7	107
30	Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 020-020.	5.4	105
31	Cosmic ray transport in the Galaxy: A review. Advances in Space Research, 2018, 62, 2731-2749.	2.6	105
32	XIPE: the X-ray imaging polarimetry explorer. Experimental Astronomy, 2013, 36, 523-567.	3.7	103
33	Gamma-ray emission from SNR RX J1713.7â^'3946 and the origin of galactic cosmic rays. Monthly Notices of the Royal Astronomical Society, 2009, 392, 240-250.	4.4	102
34	Dynamical feedback of self-generated magnetic fields in cosmic ray modified shocks. Monthly Notices of the Royal Astronomical Society, 2009, 395, 895-906.	4.4	100
35	A general solution to non-linear particle acceleration at non-relativistic shock waves. Monthly Notices of the Royal Astronomical Society: Letters, 2005, 364, L76-L80.	3.3	97
36	The contribution of supernova remnants to the galactic cosmic ray spectrum. Astroparticle Physics, 2010, 33, 160-168.	4.3	95

#	Article	IF	CITATIONS
37	Particle Acceleration in Supernova Remnants and the Production of Thermal and Nonthermal Radiation. Astrophysical Journal, 2007, 661, 879-891.	4.5	93
38	On the statistical significance of the GZK feature in the spectrum of ultra-high energy cosmic rays. Astroparticle Physics, 2003, 20, 53-65.	4.3	92
39	An upper limit to the photon fraction in cosmic rays above 1019eV from the Pierre Auger Observatory. Astroparticle Physics, 2007, 27, 155-168.	4.3	90
40	GAMMA RAYS FROM CLUSTERS OF GALAXIES. International Journal of Modern Physics A, 2007, 22, 681-706.	1.5	89
41	Galactic cosmic rays after the AMS-02 observations. Physical Review D, 2019, 99, .	4.7	83
42	On the escape of particles from cosmic ray modified shocks. Monthly Notices of the Royal Astronomical Society, 2009, 396, 2065-2073.	4.4	82
43	Nonlinear shock acceleration in the presence of seed particles. Astroparticle Physics, 2004, 21, 45-57.	4.3	81
44	The maximum momentum of particles accelerated at cosmic ray modified shocks. Monthly Notices of the Royal Astronomical Society, 2007, 375, 1471-1478.	4.4	80
45	Alfvénic reacceleration of relativistic particles in galaxy clusters in the presence of secondary electrons and positrons. Monthly Notices of the Royal Astronomical Society, 2005, 363, 1173-1187.	4.4	79
46	COLLISIONLESS SHOCKS IN A PARTIALLY IONIZED MEDIUM. I. NEUTRAL RETURN FLUX AND ITS EFFECTS ON ACCELERATION OF TEST PARTICLES. Astrophysical Journal, 2012, 755, 121.	4.5	79
47	Signatures of high energy protons in pulsar winds. Astronomy and Astrophysics, 2003, 402, 827-836.	5.1	76
48	Cosmic ray driven Galactic winds. Monthly Notices of the Royal Astronomical Society, 2016, 462, 4227-4239.	4.4	75
49	Probing the origin of giant radio haloes through radio and γ-ray data: the case of the Coma cluster. Monthly Notices of the Royal Astronomical Society, 2012, 426, 956-968.	4.4	73
50	AMS-02 beryllium data and its implication for cosmic ray transport. Physical Review D, 2020, 101, .	4.7	70
51	Non-linear diffusive shock acceleration with free-escape boundary. Astroparticle Physics, 2010, 33, 307-311.	4.3	68
52	Dynamical Effects of Self-Generated Magnetic Fields in Cosmic-Ray-modified Shocks. Astrophysical Journal, 2008, 679, L139-L142.	4.5	67
53	Origin of the Cosmic Ray Galactic Halo Driven by Advected Turbulence and Self-Generated Waves. Physical Review Letters, 2018, 121, 021102.	7.8	67
54	The small scale anisotropies, the spectrum and the sources of ultra-high energy cosmic rays. Astroparticle Physics, 2004, 20, 559-577.	4.3	63

#	Article	IF	CITATIONS
55	Neutralino annihilation at the galactic centre revisited. Journal of Cosmology and Astroparticle Physics, 2004, 2004, 007-007.	5.4	62
56	On the cosmic ray spectrum from type II supernovae expanding in their red giant presupernova wind. Astroparticle Physics, 2015, 69, 1-10.	4.3	61
57	Stochastic Acceleration and Nonthermal Radiation in Clusters of Galaxies. Astrophysical Journal, 2000, 532, L9-L12.	4.5	59
58	Nonlinear cosmic ray Galactic transport in the light of AMS-02 and Voyager data. Astronomy and Astrophysics, 2015, 583, A95.	5.1	58
59	Spatial structure of X-ray filaments in SN 1006. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 405, L21-L25.	3.3	55
60	Ultra-high energy cosmic rays from annihilation of superheavy dark matter. Astroparticle Physics, 2002, 18, 57-66.	4.3	54
61	Cosmic ray transport and radiative processes in nuclei of starburst galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 487, 168-180.	4.4	54
62	The Greisen–Zatzepin–Kuzmin feature in our neighborhood of the universe. Astroparticle Physics, 2001, 15, 275-286.	4.3	52
63	Magnetized local supercluster and the origin of the highest energy cosmic rays. Physical Review D, 1998, 59, .	4.7	51
64	Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory. Astroparticle Physics, 2007, 27, 244-253.	4.3	51
65	Particle acceleration in winds of star clusters. Monthly Notices of the Royal Astronomical Society, 2021, 504, 6096-6105.	4.4	51
66	Non-linear diffusive acceleration of heavy nuclei in supernova remnant shocks. Astroparticle Physics, 2011, 34, 447-456.	4.3	50
67	Propagation of galactic cosmic rays in the presence of self-generated turbulence. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 001-001.	5.4	50
68	The gamma ray background from large scale structure formation. Astroparticle Physics, 2003, 19, 679-689.	4.3	48
69	COLLISIONLESS SHOCKS IN A PARTIALLY IONIZED MEDIUM. II. BALMER EMISSION. Astrophysical Journal, 2012, 760, 137.	4.5	48
70	Grammage of cosmic rays around Galactic supernova remnants. Physical Review D, 2016, 94, .	4.7	48
71	COLLISIONLESS SHOCKS IN A PARTIALLY IONIZED MEDIUM. III. EFFICIENT COSMIC RAY ACCELERATION. Astrophysical Journal, 2013, 768, 148.	4.5	47
72	The non-thermal radiation–cluster merger connection. Astroparticle Physics, 2001, 15, 223-240.	4.3	46

#	Article	IF	CITATIONS
73	Numerical propagation of high energy cosmic rays in the Galaxy: I. Technical issues. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 027-027.	5.4	46
74	Detecting WIMPs in the microwave sky. Astroparticle Physics, 2003, 18, 649-662.	4.3	45
75	Shock acceleration of electrons in the presence of synchrotron losses - I. Test-particle theory. Monthly Notices of the Royal Astronomical Society, 2010, 402, 2807-2816.	4.4	45
76	The fate of ultrahigh energy nuclei in the immediate environment of young fast-rotating pulsars. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 026-026.	5.4	45
77	Supernova remnant W44: a case of cosmic-ray reacceleration. Astronomy and Astrophysics, 2016, 595, A58.	5.1	45
78	On the radial distribution of Galactic cosmic rays. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 462, L88-L92.	3.3	45
79	Kinetic Simulations of Cosmic-Ray-modified Shocks. II. Particle Spectra. Astrophysical Journal, 2020, 905, 2.	4.5	44
80	Galactic factories of cosmic-ray electrons and positrons. Physical Review D, 2021, 103, .	4.7	40
81	Signatures of the transition from galactic to extragalactic cosmic rays. Physical Review D, 2008, 77, .	4.7	39
82	Charged Particle Diffusion in Isotropic Random Magnetic Fields. Astrophysical Journal, 2017, 837, 140.	4.5	37
83	Contribution of starburst nuclei to the diffuse gamma-ray and neutrino flux. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5880-5891.	4.4	37
84	The low rate of Galactic pevatrons. Astroparticle Physics, 2020, 123, 102492.	4.3	35
85	Halo dark matter and ultra-high energy cosmic rays. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 486, 233-238.	4.1	32
86	On the detectability of gamma rays from clusters of galaxies: mergers versus secondary infall. Astroparticle Physics, 2004, 20, 579-590.	4.3	30
87	On Particle Acceleration around Shocks. II. A Fully General Method for Arbitrary Shock Velocities and Scattering Media. Astrophysical Journal, 2005, 626, 877-886.	4.5	30
88	Gammaâ€Ray Constraints on Neutralino Dark Matter Clumps in the Galactic Halo. Astrophysical Journal, 2004, 601, 47-53.	4.5	29
89	Phenomenology ofBsdecays. Physical Review D, 1994, 49, 238-246.	4.7	28
90	Origin of very high- and ultra-high-energy cosmic rays. Comptes Rendus Physique, 2014, 15, 329-338.	0.9	26

#	Article	IF	CITATIONS
91	Novel aspects of cosmic ray diffusion in synthetic magnetic turbulence. Physical Review D, 2020, 102, .	4.7	26
92	Test of statistical model predictions for alpha-particle decay of90,92,94,96Ru compound nuclei. Physical Review C, 1990, 41, 127-138.	2.9	25
93	High energy gamma ray counterparts of astrophysical sources of ultra-high energy cosmic rays. Astroparticle Physics, 2005, 23, 211-226.	4.3	25
94	Diffuse gamma-ray emission from self-confined cosmic rays around Galactic sources. Monthly Notices of the Royal Astronomical Society, 2018, 474, 1944-1954.	4.4	25
95	On the Equipartition of Thermal and Nonthermal Energy in Clusters of Galaxies. Astrophysical Journal, 1999, 525, 603-608.	4.5	25
96	Escape of Cosmic Rays from the Galaxy and Effects on the Circumgalactic Medium. Physical Review Letters, 2019, 122, 051101.	7.8	24
97	Space–time fluctuations and ultra-high energy cosmic ray interactions. Astroparticle Physics, 2003, 19, 127-133.	4.3	23
98	Broad Balmer line emission and cosmic ray acceleration efficiency in supernova remnant shocks. Astronomy and Astrophysics, 2013, 558, A25.	5.1	23
99	On the spectrum of stable secondary nuclei in cosmic rays. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1662-1670.	4.4	23
100	Signature of Energy Losses on the Cosmic Ray Electron Spectrum. Physical Review Letters, 2020, 125, 051101.	7.8	23
101	Positrons from pulsar winds. Thirty Years of Astronomical Discovery With UKIRT, 2011, , 623-641.	0.3	23
102	High energy neutrinos from cosmic ray interactions in clusters of galaxies. Physical Review D, 2006, 73, .	4.7	22
103	High-Energy Cosmic Ray Self-Confinement Close to Extra-Galactic Sources. Physical Review Letters, 2015, 115, 121101.	7.8	22
104	The Effect of a Nonthermal Tail on the Sunyaev-Zeldovich Effect in Clusters of Galaxies. Astrophysical Journal, 2000, 535, L71-L74.	4.5	22
105	Cosmic ray-driven winds in the Galactic environment and the cosmic ray spectrum. Monthly Notices of the Royal Astronomical Society, 2017, 470, 865-881.	4.4	21
106	Decay ofEr156compound nucleus. Physical Review C, 1990, 42, 1472-1479.	2.9	20
107	Level density of hot nuclei withAâ‰ ¤ 0. Physical Review C, 1991, 44, 2588-2597.	2.9	20
108	Recent Results in Cosmic Ray Physics and Their Interpretation. Brazilian Journal of Physics, 2014, 44, 426-440.	1.4	20

#	Article	IF	CITATIONS
109	Particle acceleration and multimessenger emission from starburst-driven galactic winds. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1336-1348.	4.4	19
110	Cosmic ray acceleration and Balmer emission from SNR 0509-67.5. Astronomy and Astrophysics, 2013, 557, A142.	5.1	18
111	Spectra of accelerated particles at supernova shocks in the presence of neutral hydrogen: the case of Tycho. Astronomy and Astrophysics, 2016, 589, A7.	5.1	17
112	Cosmic ray protons and electrons from supernova remnants. Astronomy and Astrophysics, 2021, 650, A62.	5.1	17
113	Cosmic ray acceleration and Balmer emission from RCW 86 (G315.4 – 2.3). Astronomy and Astrophysi 2014, 562, A141.	ics, 5'1	16
114	XIPE: the x-ray imaging polarimetry explorer. , 2016, , .		16
115	Kinetic approaches to particle acceleration at cosmic ray modified shocks. Monthly Notices of the Royal Astronomical Society, 2008, 385, 1946-1958.	4.4	15
116	Ultrahigh energy neutrinos from population III stars: Concept and constraints. Physical Review D, 2012, 85, .	4.7	15
117	Effects of re-acceleration and source grammage on secondary cosmic rays spectra. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2068-2078.	4.4	15
118	Dynamical Effects of Cosmic Rays on the Medium Surrounding Their Sources. Astrophysical Journal Letters, 2021, 914, L13.	8.3	15
119	Relativistic Particle Transport and Acceleration in Structured Plasma Turbulence. Astrophysical Journal, 2022, 928, 25.	4.5	15
120	Gamma rays and neutrinos from SNR RX J1713.7–3946. Astroparticle Physics, 2009, 31, 376-382.	4.3	14
121	Origin of Galactic Cosmic Rays. Nuclear Physics, Section B, Proceedings Supplements, 2013, 239-240, 140-147.	0.4	14
122	Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7â^'3946. Astrophysical Journal, 2017, 840, 74.	4.5	14
123	COSMIC RAY ACCELERATION DURING LARGE SCALE STRUCTURE FORMATION. Journal of the Korean Astronomical Society, 2004, 37, 483-491.	1.5	14
124	Intermediate-mass and heavy Galactic cosmic-ray nuclei: The case of new AMS-02 measurements. Physical Review D, 2021, 103, .	4.7	13
125	Gamma rays from superheavy relic particles in the halo. Physical Review D, 1999, 60, .	4.7	12
126	On Particle Acceleration around Shocks. III. Shock Waves Moving at Arbitrary Speed. The Case of Large cale Magnetic Field and Anisotropic Scattering. Astrophysical Journal, 2007, 658, 1069-1080.	4.5	12

#	Article	IF	CITATIONS
127	The Self-Control of Cosmic Rays. Galaxies, 2019, 7, 64.	3.0	12
128	Selected Topics in Cosmic Ray Physics. , 2018, , 1-95.		11
129	ON THE ORIGIN OF VERY HIGH ENERGY COSMIC RAYS. Modern Physics Letters A, 2005, 20, 3055-3076.	1.2	10
130	A closer look at the spectrum and small scale anisotropies of ultrahigh energy cosmic rays. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 002-002.	5.4	10
131	Identifying Nearby Accelerators of Ultrahigh Energy Cosmic Rays Using Ultrahigh Energy (and Very) Tj ETQq1 1	0.784314 7.8	rgBJ /Overlo
132	High precision particle astrophysics as a new window on the universe with an Antimatter Large Acceptance Detector In Orbit (ALADInO). Experimental Astronomy, 2021, 51, 1299-1330.	3.7	9
133	Gamma-rays from reaccelerated particles at supernova remnant shocks. Monthly Notices of the Royal Astronomical Society, 2019, 489, 108-115.	4.4	8
134	Prescission neutron emission fromPd104. Physical Review C, 1993, 47, R1835-R1837.	2.9	7
135	Origin of high energy cosmic rays: A short review. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 588, 166-170.	1.6	7
136	Stochastic nature of Galactic cosmic-ray sources. Physical Review D, 2021, 104, .	4.7	7
137	Particle Acceleration at shocks: some modern aspects of an old problem. Nuclear Physics, Section B, Proceedings Supplements, 2004, 136, 208-217.	0.4	6
138	High energy gamma ray counterparts of astrophysical sources of ultra-high energy cosmic rays. Nuclear Physics, Section B, Proceedings Supplements, 2004, 136, 191-197.	0.4	6
139	Small scale anisotropy predictions for the Auger Observatory. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 015-015.	5.4	6
140	On Particle Acceleration around Shocks. IV. Particle Spectrum as a Function of the Equation of State of the Shocked Plasma. Astrophysical Journal, 2007, 662, 980-987.	4.5	6
141	Recent developments in cosmic ray physics. Nuclear Physics, Section B, Proceedings Supplements, 2014, 256-257, 36-47.	0.4	6
142	Atmospheric neutrinos and the knee of the cosmic ray spectrum. Astroparticle Physics, 2020, 114, 22-29.	4.3	6
143	Cosmic-ray generated bubbles around their sources. Monthly Notices of the Royal Astronomical Society, 2022, 512, 233-244.	4.4	6
144	High energy phenomena in clusters of galaxies. Nuclear Physics, Section B, Proceedings Supplements, 1999, 70, 495-499.	0.4	5

#	Article	IF	CITATIONS
145	Theory of synchrotron radiation. Astroparticle Physics, 2002, 18, 183-193.	4.3	5
146	Observation of selectiveγdecay of fission-like fragments in theNi32reaction at 143 MeV. Physical Review C, 1987, 35, 338-340.	2.9	3
147	A novel approach to non linear Shock acceleration. Nuclear Physics, Section B, Proceedings Supplements, 2002, 110, 475-477.	0.4	3
148	A fluctuating energy–momentum may produce an unstable world. Astroparticle Physics, 2003, 20, 369-376.	4.3	3
149	Planck Scale Kinematics and the Pierre Auger Observatory. , 0, , 1-30.		3
150	Gamma ray emission and stochastic particle acceleration in galaxy clusters. , 2008, , .		3
151	Theoretical challenges in acceleration and transport of ultra high energy cosmic rays: A review. EPJ Web of Conferences, 2013, 53, 01002.	0.3	3
152	Microphysics of Diffusive Shock Acceleration: Impact on the Spectrum of Accelerated Particles. Astrophysical Journal, 2022, 930, 28.	4.5	3
153	ULTRA HIGH ENERGY COSMIC RAYS. International Journal of Modern Physics A, 2005, 20, 6545-6561.	1.5	2
154	The origin of ultra high energy cosmic rays. Journal of Physics: Conference Series, 2006, 39, 372-378.	0.4	2
155	Acceleration of Cosmic Rays. Nuclear Physics, Section B, Proceedings Supplements, 2007, 165, 122-129.	0.4	2
156	High energy emission from galaxy clusters and particle acceleration due to MHD turbulence. , 2009, , .		2
157	Non-linear Cosmic Ray Propagation. Nuclear and Particle Physics Proceedings, 2018, 297-299, 115-124.	0.5	2
158	A New Mechanism for Gamma-Ray Bursts in SN Type I Explosions. I. Weak Magnetic Field. Astrophysical Journal, 1996, 469, 311.	4.5	2
159	Neutron spectra from theEr156compound nucleus populated byâ^'12andinduced64reactions. Physical Review C, 1993, 48, 2072-2073.	2.9	1
160	Quantum-Gravity phenomenology and high energy particle propagation. Nuclear Physics, Section B, Proceedings Supplements, 2004, 136, 344-349.	0.4	1
161	Cosmic ray physics from low to extreme energies: Status and perspectives. Advances in Space Research, 2006, 37, 1834-1840.	2.6	1
162	On the origin of high energy cosmic rays. Journal of Physics: Conference Series, 2010, 203, 012017.	0.4	1

PASQUALE BLASI

#	Article	IF	CITATIONS
163	Gamma-ray emission from self-confined cosmic rays around their galactic sources. AIP Conference Proceedings, 2017, , .	0.4	1
164	Highâ€Energy Gamma Rays from Old, Accreting Neutron Stars. Astrophysical Journal, 1996, 473, 985-989.	4.5	1
165	THEORETICAL ASPECTS OF ULTRA HIGH ENERGY COSMIC RAYS. , 2003, , .		1
166	PHENOMENOLOGY OF SPACE TIME FLUCTUATIONS. , 2006, , .		1
167	Dark matter distribution in the universe and ultra-high energy cosmic rays. AIP Conference Proceedings, 2001, , .	0.4	Ο
168	Theory of synchrotron radiation. Astroparticle Physics, 2002, 18, 195-203.	4.3	0
169	Ultra-high energy cosmic rays: The annihilation of super-heavy relics. Nuclear Physics, Section B, Proceedings Supplements, 2002, 110, 494-496.	0.4	Ο
170	Ultra-high energy cosmic rays: a probe into new physics. Nuclear Physics, Section B, Proceedings Supplements, 2002, 113, 60-67.	0.4	0
171	Ultrahigh energy cosmic rays from dark matter annihilation. Nuclear Physics, Section B, Proceedings Supplements, 2003, 124, 201-204.	0.4	Ο
172	A Window on the Ultra-High Energy Universe. Highlights of Astronomy, 2005, 13, 34-37.	0.0	0
173	Cosmic Rays and Gamma Radiation from Clusters of Galaxies. AIP Conference Proceedings, 2005, , .	0.4	Ο
174	Acceleration and Propagation of Ultra High Energy Cosmic Rays. AIP Conference Proceedings, 2005, , .	0.4	0
175	Non-linear shock acceleration and high energy gamma rays from clusters of galaxies. AIP Conference Proceedings, 2005, , .	0.4	0
176	On the role of injection in kinetic approaches to nonlinear particle acceleration at non relativistic shocks. AIP Conference Proceedings, 2005, , .	0.4	0
177	Kinetic approaches to non-linear particle acceleration at shock fronts. Proceedings of the International Astronomical Union, 2006, 2, 101-101.	0.0	0
178	Open questions with ultra-high energy cosmic rays. Journal of Physics: Conference Series, 2007, 60, 20-25.	0.4	0
179	Galactic cosmic rays. EPJ Web of Conferences, 2015, 105, 00002.	0.3	0
180	Shock acceleration in partially neutral plasmas. , 2011, , .		0

Shock acceleration in partially neutral plasmas. , 2011, , . 180