Kang Ho Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8368640/publications.pdf Version: 2024-02-01

KANC HO KIM

#	Article	IF	CITATIONS
1	The bile acid induced hepatokine orosomucoid suppresses adipocyte differentiation. Biochemical and Biophysical Research Communications, 2021, 534, 864-870.	1.0	6
2	Ube2i deletion in adipocytes causes lipoatrophy in mice. Molecular Metabolism, 2021, 48, 101221.	3.0	9
3	Vitamin D Receptor Activation in Liver Macrophages Ameliorates Hepatic Inflammation, Steatosis, and Insulin Resistance in Mice. Hepatology, 2020, 71, 1559-1574.	3.6	103
4	Vitamin D Receptor Activation in Liver Macrophages Protects Against Hepatic Endoplasmic Reticulum Stress in Mice. Hepatology, 2020, 71, 1453-1466.	3.6	38
5	Methylâ€Sensing Nuclear Receptor Liver Receptor Homologâ€1 Regulates Mitochondrial Function in Mouse Hepatocytes. Hepatology, 2020, 71, 1055-1069.	3.6	20
6	Metabolic dysregulation in the <i>Atp7b</i> ^{â^'/â^'} Wilson's disease mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2076-2083.	3.3	35
7	STAT1 Dissociates Adipose Tissue Inflammation From Insulin Sensitivity in Obesity. Diabetes, 2020, 69, 2630-2641.	0.3	24
8	Epigenome environment interactions accelerate epigenomic aging and unlock metabolically restricted epigenetic reprogramming in adulthood. Nature Communications, 2020, 11, 2316.	5.8	43
9	Protective role of cardiac-specific overexpression of caveolin-3 in cirrhotic cardiomyopathy. American Journal of Physiology - Renal Physiology, 2020, 318, G531-G541.	1.6	6
10	Constitutive Androstane Receptor Differentially Regulates Bile Acid Homeostasis in Mouse Models of Intrahepatic Cholestasis. Hepatology Communications, 2019, 3, 147-159.	2.0	15
11	Rapid Disruption of Genes Specifically in Livers of Mice Using Multiplex CRISPR/Cas9 Editing. Gastroenterology, 2018, 155, 1967-1970.e6.	0.6	16
12	Xenobiotic Nuclear Receptor Signaling Determines Molecular Pathogenesis of Progressive Familial Intrahepatic Cholestasis. Endocrinology, 2018, 159, 2435-2446.	1.4	10
13	Hepatic FXR/SHP axis modulates systemic glucose and fatty acid homeostasis in aged mice. Hepatology, 2017, 66, 498-509.	3.6	81
14	Regulation of Liver Energy Balance by the Nuclear Receptors Farnesoid X Receptor and Peroxisome Proliferator Activated Receptor α. Digestive Diseases, 2017, 35, 203-209.	0.8	17
15	Glucocorticoids Have Opposing Effects on Liver Fibrosis in Hepatic Stellate and Immune Cells. Molecular Endocrinology, 2016, 30, 905-916.	3.7	26
16	Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis. Nature Communications, 2016, 7, 10713.	5.8	227
17	Small Heterodimer Partner (NROB2) Coordinates Nutrient Signaling and the Circadian Clock in Mice. Molecular Endocrinology, 2016, 30, 988-995.	3.7	10
18	Assaying Cell Cycle Status Using Flow Cytometry. Current Protocols in Molecular Biology, 2015, 111, 28.6.1-28.6.11.	2.9	174

		Κανς Ηο Κιμ		
#	Article	IF	CITATIONS	
19	Nutrient-sensing nuclear receptors coordinate autophagy. Nature, 2014, 516, 112-115.	13.7	412	