Kaveh Shahbaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8368531/publications.pdf Version: 2024-02-01

KANEH SHAHBAZ

#	Article	IF	CITATIONS
1	Densities of ammonium and phosphonium based deep eutectic solvents: Prediction using artificial intelligence and group contribution techniques. Thermochimica Acta, 2012, 527, 59-66.	1.2	264
2	Prediction of deep eutectic solvents densities at different temperatures. Thermochimica Acta, 2011, 515, 67-72.	1.2	200
3	Using Deep Eutectic Solvents Based on Methyl Triphenyl Phosphunium Bromide for the Removal of Glycerol from Palm-Oil-Based Biodiesel. Energy & Fuels, 2011, 25, 2671-2678.	2.5	189
4	Using Deep Eutectic Solvents for the Removal of Glycerol from Palm Oil-Based Biodiesel. Journal of Applied Sciences, 2010, 10, 3349-3354.	0.1	129
5	Prediction of the surface tension of deep eutectic solvents. Fluid Phase Equilibria, 2012, 319, 48-54.	1.4	126
6	Eutectic solvents for the removal of residual palm oil-based biodiesel catalyst. Separation and Purification Technology, 2011, 81, 216-222.	3.9	121
7	Recent progress in solar thermal energy storage using nanomaterials. Renewable and Sustainable Energy Reviews, 2017, 67, 450-460.	8.2	115
8	Thermogravimetric measurement of deep eutectic solvents vapor pressure. Journal of Molecular Liquids, 2016, 222, 61-66.	2.3	93
9	Prediction of refractive index and density of deep eutectic solvents using atomic contributions. Fluid Phase Equilibria, 2013, 354, 304-311.	1.4	76
10	Electrical conductivity of ammonium and phosphonium based deep eutectic solvents: Measurements and artificial intelligence-based prediction. Fluid Phase Equilibria, 2013, 356, 30-37.	1.4	70
11	Application of the Eötvos and Guggenheim empirical rules for predicting the density and surface tension of ionic liquids analogues. Thermochimica Acta, 2014, 575, 40-44.	1.2	69
12	Zinc (II) chloride-based deep eutectic solvents for application as electrolytes: Preparation and characterization. Journal of Molecular Liquids, 2015, 204, 76-83.	2.3	67
13	A novel calcium chloride hexahydrate-based deep eutectic solvent as a phase change materials. Solar Energy Materials and Solar Cells, 2016, 155, 147-154.	3.0	64
14	Application of deep eutectic solvents as catalysts for the esterification of oleic acid with glycerol. Renewable Energy, 2017, 114, 480-488.	4.3	60
15	Improving the production of propyl and butyl ester-based biodiesel by purification using deep eutectic solvents. Separation and Purification Technology, 2017, 174, 570-576.	3.9	43
16	Synthesis and thermo-physical properties of deep eutectic solvent-based graphene nanofluids. Nanotechnology, 2016, 27, 075702.	1.3	39
17	Deep eutectic solvents – Versatile chemicals in biodiesel production. Fuel, 2021, 295, 120604.	3.4	39
18	Glycerolysis of free fatty acids: A review. Renewable and Sustainable Energy Reviews, 2021, 137, 110501.	8.2	35

Качен Ѕнанваг

#	Article	IF	CITATIONS
19	Prediction of glycerol removal from biodiesel using ammonium and phosphunium based deep eutectic solvents using artificial intelligence techniques. Chemometrics and Intelligent Laboratory Systems, 2012, 118, 193-199.	1.8	32
20	Approach for Polygodial Extraction from <i>Pseudowintera colorata</i> (Horopito) Leaves Using Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2018, 6, 862-871.	3.2	31
21	Modified Rackett equation for modelling the molar volume of deep eutectic solvents. Thermochimica Acta, 2015, 614, 185-190.	1.2	30
22	Stability and thermophysical studies on deep eutectic solvent based carbon nanotube nanofluid. Materials Research Express, 2017, 4, 075028.	0.8	28
23	Effective devulcanization of ground tire rubber using choline chloride-based deep eutectic solvents. Journal of Environmental Chemical Engineering, 2019, 7, 103151.	3.3	22
24	Application of deep eutectic solvents in the extraction of polyphenolic antioxidants from New Zealand Manuka leaves (Leptospermum Scoparium): Optimization and antioxidant activity. Journal of Molecular Liquids, 2021, 337, 116385.	2.3	20
25	Elimination of All Free Glycerol and Reduction of Total Glycerol from Palm Oil-Based Biodiesel Using Non-Glycerol Based Deep Eutectic Solvents. Separation Science and Technology, 2013, 48, 1184-1193.	1.3	18
26	Densities and Viscosities of Binary Blends of Methyl Esters + Ethyl Esters and Ternary Blends of Methyl Esters + Ethyl Esters + Diesel Fuel from T = (293.15 to 358.15) K. Journal of Chemical & Engineering Data, 2012, 57, 1387-1395.	1.0	15
27	Binary mixtures of fatty alcohols and fatty acid esters as novel solidâ€liquid phase change materials. International Journal of Energy Research, 2019, 43, 8536.	2.2	15
28	Glycerolysis of free fatty acid in vegetable oil deodorizer distillate catalyzed by phosphonium-based deep eutectic solvent. Renewable Energy, 2020, 160, 363-373.	4.3	15
29	Evaluation of deep eutectic solvents in the extraction of β-caryophyllene from New Zealand Manuka leaves (Leptospermum scoparium). Chemical Engineering Research and Design, 2021, 166, 97-108.	2.7	15
30	Antioxidant and antibacterial evaluation of Manuka leaves (Leptospermum scoparium) extracted by hydrophobic deep eutectic solvent. Chemical Engineering Research and Design, 2021, 174, 96-106.	2.7	10
31	Adsorptive removal of residual catalyst from palm biodiesel: Application of response surface methodology. Hemijska Industrija, 2012, 66, 373-380.	0.3	10
32	Guanidinium solvents with exceptional hydrogen bond donating abilities. Chemical Communications, 2022, 58, 3505-3508.	2.2	4
33	The potential use of pulsed electric field to assist in polygodial extraction from Horopito (Pseudowintera colorata) leaves. Korean Journal of Chemical Engineering, 2019, 3 <u>6, 272-280.</u>	1.2	2