List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8368360/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	What is amyotrophic lateral sclerosis prevalence?. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 203-208.	1.7	8
2	Tailoring patients' enrollment in ALS clinical trials: the effect of disease duration and vital capacity cutoffs. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 108-115.	1.7	1
3	Study protocol on the safety and feasibility of a normocaloric ketogenic diet in people with amyotrophic lateral sclerosis. Nutrition, 2022, 94, 111525.	2.4	7
4	Identifying and predicting amyotrophic lateral sclerosis clinical subgroups: a population-based machine-learning study. The Lancet Digital Health, 2022, 4, e359-e369.	12.3	19
5	Characterization of the p.L145F and p.S135N Mutations in SOD1: Impact on the Metabolism of Fibroblasts Derived from Amyotrophic Lateral Sclerosis Patients. Antioxidants, 2022, 11, 815.	5.1	3
6	Metal(loid)s role in the pathogenesis of amyotrophic lateral sclerosis: Environmental, epidemiological, and genetic data. Environmental Research, 2021, 192, 110292.	7.5	16
7	Critical illness neuro-myopathy (CINM) and focal amyotrophy in intensive care unit (ICU) patients with SARS-CoV-2: a case series. Neurological Sciences, 2021, 42, 1119-1121.	1.9	17
8	Telehealth approach for amyotrophic lateral sclerosis patients: the experience during COVIDâ€19 pandemic. Acta Neurologica Scandinavica, 2021, 143, 489-496.	2.1	19
9	Mutational Analysis of Known ALS Genes in an Italian Population-Based Cohort. Neurology, 2021, 96, e600-e609.	1.1	23
10	Functional status and oral health in patients with amyotrophic lateral sclerosis: A cross-sectional study. NeuroRehabilitation, 2021, 48, 49-57.	1.3	17
11	Telehealth in Neurodegenerative Diseases: Opportunities and Challenges for Patients and Physicians. Brain Sciences, 2021, 11, 237.	2.3	34
12	Do ecological factors influence the clinical presentation of amyotrophic lateral sclerosis?. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1017-1019.	1.9	4
13	The Impact of Lifetime Alcohol and Cigarette Smoking Loads on Amyotrophic Lateral Sclerosis Progression: A Cross-Sectional Study. Life, 2021, 11, 352.	2.4	5
14	Looking backward to move forward: a meta-analysis of stem cell therapy in amyotrophic lateral sclerosis. Npj Regenerative Medicine, 2021, 6, 20.	5.2	19
15	Interplay between immunity and amyotrophic lateral sclerosis: Clinical impact. Neuroscience and Biobehavioral Reviews, 2021, 127, 958-978.	6.1	22
16	GBA variants influence cognitive status in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2021, , jnnp-2021-327426.	1.9	3
17	Accelerated Early Progression of Amyotrophic Lateral Sclerosis over the COVID-19 Pandemic. Brain Sciences, 2021, 11, 1291.	2.3	15
18	The first case of the <i>TARDBP</i> p.G294V mutation in a homozygous state: is a single pathogenic allele sufficient to cause ALS?. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 273-279.	1.7	10

#	Article	IF	CITATIONS
19	Singleâ€pulse transcranial magnetic stimulation in amyotrophic lateral sclerosis. Muscle and Nerve, 2020, 61, 330-337.	2.2	3
20	Regional spreading of symptoms at diagnosis as a prognostic marker in amyotrophic lateral sclerosis: a population-based study. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 291-297.	1.9	18
21	Immunity in amyotrophic lateral sclerosis: blurred lines between excessive inflammation and inefficient immune responses. Brain Communications, 2020, 2, fcaa124.	3.3	53
22	Generation of an induced pluripotent stem cell line, CSSi011-A (6534), from an Amyotrophic lateral sclerosis patient with heterozygous L145F mutation in SOD1 gene. Stem Cell Research, 2020, 47, 101924.	0.7	2
23	Reply to Comment on "Environmental and Occupational Risk Factors of Amyotrophic Lateral Sclerosis: A Population-Based Case-Control Study― International Journal of Environmental Research and Public Health, 2020, 17, 6492.	2.6	1
24	Detection of White Matter Ultrastructural Changes for Amyotrophic Lateral Sclerosis Characterization: A Diagnostic Study from Dti-Derived Data. Brain Sciences, 2020, 10, 996.	2.3	5
25	Decline of cognitive and behavioral functions in amyotrophic lateral sclerosis: a longitudinal study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 373-379.	1.7	40
26	A prospective longitudinal study on the microbiota composition in amyotrophic lateral sclerosis. BMC Medicine, 2020, 18, 153.	5.5	78
27	The Italian multicenter experience with edaravone in amyotrophic lateral sclerosis. Journal of Neurology, 2020, 267, 3258-3267.	3.6	37
28	Reply to: Amyotrophic lateral sclerosis with depression, cognitive impairment, and mortality. Acta Neurologica Scandinavica, 2020, 142, 86-87.	2.1	0
29	Prognostic role of slow vital capacity in amyotrophic lateral sclerosis. Journal of Neurology, 2020, 267, 1615-1621.	3.6	18
30	ALS phenotype is influenced by age, sex, and genetics. Neurology, 2020, 94, e802-e810.	1.1	99
31	Disease-modifying therapies in amyotrophic lateral sclerosis. Neuropharmacology, 2020, 167, 107986.	4.1	75
32	Environmental and Occupational Risk Factors of Amyotrophic Lateral Sclerosis: A Population-Based Case-Control Study. International Journal of Environmental Research and Public Health, 2020, 17, 2882.	2.6	42
33	G-CSF (filgrastim) treatment for amyotrophic lateral sclerosis: protocol for a phase II randomised, double-blind, placebo-controlled, parallel group, multicentre clinical study (STEMALS-II trial). BMJ Open, 2020, 10, e034049.	1.9	7
34	Telemedicine and technological devices for amyotrophic lateral sclerosis in the era of COVID-19. Neurological Sciences, 2020, 41, 1365-1367.	1.9	23
35	Clinical and Lifestyle Factors and Risk of Amyotrophic Lateral Sclerosis: A Population-Based Case-Control Study. International Journal of Environmental Research and Public Health, 2020, 17, 857.	2.6	38
36	Analysis of the GCG repeat length in NIPA1 gene in C9orf72-mediated ALS in a large Italian ALS cohort. Neurological Sciences, 2019, 40, 2537-2540.	1.9	7

#	Article	IF	CITATIONS
37	Depression and risk of cognitive dysfunctions in amyotrophic lateral sclerosis. Acta Neurologica Scandinavica, 2019, 139, 438-445.	2.1	20
38	Results from Phase I Clinical Trial with Intraspinal Injection of Neural Stem Cells in Amyotrophic Lateral Sclerosis: A Long-Term Outcome. Stem Cells Translational Medicine, 2019, 8, 887-897.	3.3	71
39	Transplantation of clinical-grade human neural stem cells reduces neuroinflammation, prolongs survival and delays disease progression in the SOD1 rats. Cell Death and Disease, 2019, 10, 345.	6.3	28
40	Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Annals of Neurology, 2019, 85, 470-481.	5.3	118
41	Cognitive impairment across ALS clinical stages in a population-based cohort. Neurology, 2019, 93, e984-e994.	1.1	115
42	Early weight loss in amyotrophic lateral sclerosis: outcome relevance and clinical correlates in a population-based cohort. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 666-673.	1.9	73
43	A case of late-onset OCD developing PLS and FTD. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 463-465.	1.7	5
44	Characterization of the c9orf72 GC-rich low complexity sequence in two cohorts of Italian and Turkish ALS cases. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 426-431.	1.7	2
45	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	8.1	517
46	Rapamycin treatment for amyotrophic lateral sclerosis. Medicine (United States), 2018, 97, e11119.	1.0	96
47	Potential Role of Gut Microbiota in ALS Pathogenesis and Possible Novel Therapeutic Strategies. Journal of Clinical Gastroenterology, 2018, 52, S68-S70.	2.2	63
48	The multistep hypothesis of ALS revisited. Neurology, 2018, 91, e635-e642.	1.1	146
49	Advances in stem cell therapy for amyotrophic lateral sclerosis. Expert Opinion on Biological Therapy, 2018, 18, 865-881.	3.1	30
50	C9orf72 expansion differentially affects males with spinal onset amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 281.1-281.	1.9	33
51	Incidence of amyotrophic lateral sclerosis in the province of Novara, Italy, and possible role of environmental pollution. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 284-290.	1.7	21
52	Influence of arterial hypertension, type 2 diabetes and cardiovascular risk factors on ALS outcome: a population-based study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 590-597.	1.7	27
53	Protein misfolding, amyotrophic lateral sclerosis and guanabenz: protocol for a phase II RCT with futility design (ProMISe trial). BMJ Open, 2017, 7, e015434.	1.9	14
54	Secular Trends of Amyotrophic Lateral Sclerosis. JAMA Neurology, 2017, 74, 1097.	9.0	85

#	Article	IF	CITATIONS
55	MRI imaging and clinical features of sciatic nerve injection injury. International Journal of Neuroscience, 2016, 126, 1-2.	1.6	3
56	Influence of cigarette smoking on ALS outcome: a population-based study. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1229-1233.	1.9	37
57	TBK1 is associated with ALS and ALS-FTD in Sardinian patients. Neurobiology of Aging, 2016, 43, 180.e1-180.e5.	3.1	40
58	Intraspinal stem cell transplantation for amyotrophic lateral sclerosis: Ready for efficacy clinical trials?. Cytotherapy, 2016, 18, 1471-1475.	0.7	21
59	Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1043-1048.	21.4	494
60	Association of a Locus in the <i>CAMTA1</i> Gene With Survival in Patients With Sporadic Amyotrophic Lateral Sclerosis. JAMA Neurology, 2016, 73, 812.	9.0	57
61	ATNX2 is not a regulatory gene in Italian amyotrophic lateral sclerosis patients with C9ORF72 GGGGCC expansion. Neurobiology of Aging, 2016, 39, 218.e5-218.e8.	3.1	6
62	Stem cells therapy for ALS. Expert Opinion on Biological Therapy, 2016, 16, 187-199.	3.1	24
63	Chitotriosidase and lysosomal enzymes as potential biomarkers of disease progression in amyotrophic lateral sclerosis: A survey clinic-based study. Journal of the Neurological Sciences, 2015, 348, 245-250.	0.6	45
64	Coeliac disease mimicking Amyotrophic Lateral Sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 277-279.	1.7	4
65	Erythropoietin in amyotrophic lateral sclerosis: a multicentre, randomised, double blind, placebo controlled, phase III study. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 879-886.	1.9	32
66	TUBA4A gene analysis in sporadic amyotrophic lateral sclerosis: identification of novel mutations. Journal of Neurology, 2015, 262, 1376-1378.	3.6	44
67	Human neural stem cell transplantation in ALS: initial results from a phase I trial. Journal of Translational Medicine, 2015, 13, 17.	4.4	151
68	<i>ATXN2</i> polyQ intermediate repeats are a modifier of ALS survival. Neurology, 2015, 84, 251-258.	1.1	52
69	Amyotrophic Lateral Sclerosis Outcome Measures and the Role of Albumin and Creatinine. JAMA Neurology, 2014, 71, 1134.	9.0	150
70	Analysis of the KIFAP3 gene in amyotrophic lateral sclerosis: a multicenter survival study. Neurobiology of Aging, 2014, 35, 2420.e13-2420.e14.	3.1	16
71	A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis. Human Molecular Genetics, 2014, 23, 2220-2231.	2.9	123
72	Analysis of amyotrophic lateral sclerosis as a multistep process: a population-based modelling study. Lancet Neurology, The, 2014, 13, 1108-1113.	10.2	302

#	Article	IF	CITATIONS
73	Exome-wide Rare Variant Analysis Identifies TUBA4A Mutations Associated with Familial ALS. Neuron, 2014, 84, 324-331.	8.1	308
74	A rare case of conjugal amyotrophic lateral sclerosis. Journal of Neurology, 2014, 261, 1216-1217.	3.6	5
75	Human mesenchymal stromal cell transplantation modulates neuroinflammatory milieu in a mouse model of amyotrophic lateralÂsclerosis. Cytotherapy, 2014, 16, 1059-1072.	0.7	79
76	Screening of the PFN1 gene in sporadic amyotrophic lateral sclerosis and in frontotemporal dementia. Neurobiology of Aging, 2013, 34, 1517.e9-1517.e10.	3.1	35
77	Analysis of hnRNPA1, A2/B1, and A3 genes in patients with amyotrophic lateral sclerosis. Neurobiology of Aging, 2013, 34, 2695.e11-2695.e12.	3.1	30
78	Randomized double-blind placebo-controlled trial of acetyl-L-carnitine for ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 397-405.	1.7	68
79	Pilot trial of clenbuterol in spinal and bulbar muscular atrophy. Neurology, 2013, 80, 2095-2098.	1.1	47
80	<i>Ubiquilin 2</i> mutations in Italian patients with amyotrophic lateral sclerosis and frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 183-187.	1.9	74
81	Non-invasive ventilation in amyotrophic lateral sclerosis: a 10 year population based study. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 377-381.	1.9	73
82	Extensive genetics of ALS. Neurology, 2012, 79, 1983-1989.	1.1	145
83	Mutational analysis of VCP gene in familial amyotrophic lateral sclerosis. Neurobiology of Aging, 2012, 33, 630.e1-630.e2.	3.1	17
84	C9ORF72 repeat expansion in a large Italian ALS cohort: evidence of a founder effect. Neurobiology of Aging, 2012, 33, 2528.e7-2528.e14.	3.1	74
85	Transplantation of mesenchymal stem cells in ALS. Progress in Brain Research, 2012, 201, 333-359.	1.4	32
86	Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy, 2012, 14, 56-60.	0.7	181
87	Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 740-746.	1.9	513
88	No association of DPP6 with amyotrophic lateral sclerosis in an Italian population. Neurobiology of Aging, 2011, 32, 966-967.	3.1	28
89	A novel peripherin gene (PRPH) mutation identified in one sporadic amyotrophic lateral sclerosis patient. Neurobiology of Aging, 2011, 32, 552.e1-552.e6.	3.1	49
90	ATXN-2 CAG repeat expansions are interrupted in ALS patients. Human Genetics, 2011, 130, 575-580.	3.8	52

#	Article	IF	CITATIONS
91	Isolated continuous lingual myoclonus: unusual presentation of amyotrophic lateral sclerosis. Movement Disorders, 2010, 25, 1309-1310.	3.9	3
92	Mutations of FUS gene in sporadic amyotrophic lateral sclerosis. Journal of Medical Genetics, 2010, 47, 190-194.	3.2	152
93	Mesenchymal stem cells for ALS patients. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2009, 10, 123-124.	2.1	16
94	Stem cells in amyotrophic lateral sclerosis: state of the art. Expert Opinion on Biological Therapy, 2009, 9, 1245-1258.	3.1	16
95	Stem cell treatment in Amyotrophic Lateral Sclerosis. Journal of the Neurological Sciences, 2008, 265, 78-83.	0.6	205
96	Illness perceptions, mood and health-related quality of life in patients with amyotrophic lateral sclerosis. Journal of Psychosomatic Research, 2008, 65, 603-609.	2.6	24
97	Bone Marrow Mesenchymal Stem Cells from Healthy Donors and Sporadic Amyotrophic Lateral Sclerosis Patients. Cell Transplantation, 2008, 17, 255-266.	2.5	75
98	Variations in the coding and regulatory sequences of the angiogenin (ANG) gene are not associated to ALS (amyotrophic lateral sclerosis) in the Italian population. Journal of the Neurological Sciences, 2007, 258, 123-127.	0.6	37
99	The cortico-diaphragmatic pathway involvement in amyotrophic lateral sclerosis: Neurophysiological, respiratory and clinical considerations. Journal of the Neurological Sciences, 2006, 251, 10-16.	0.6	19
100	Autologous mesenchymal stem cells: clinical applications in amyotrophic lateral sclerosis. Neurological Research, 2006, 28, 523-526.	1.3	169
101	Clinical applications of event-related potentials in brain injury. Physical Medicine and Rehabilitation Clinics of North America, 2004, 15, 163-175.	1.3	11
102	Stem-cell therapy for amyotrophic lateral sclerosis. Lancet, The, 2004, 364, 1936-1937.	13.7	23
103	Posttraumatic Epilepsy: Neuroradiologic and Neuropsychological Assessment of Long-term Outcome. Epilepsia, 2003, 44, 569-574.	5.1	78
104	Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders: Official Publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases, 2003, 4, 158-161.	1.2	216
105	Posttraumatic hydrocephalus: a clinical, neuroradiologic, and neuropsychologic assessment of long-term outcome 11No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the author(s) or upon any organization with which the author(s) is/are associated Archives of Physical Medicine and	0.9	168
106	Reliability of the El Escorial Diagnostic Criteria for Amyotrophic Lateral Sclerosis. Neuroepidemiology, 2002, 21, 265-270.	2.3	58
107	Long-latency auditory-evoked potentials in severe traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 2001, 82, 57-65.	0.9	48
108	Patients with amyotrophic lateral sclerosis and cancer do not differ clinically from patients with sporadic amyotrophic lateral sclerosis. Journal of Neurology, 2000, 247, 778-782.	3.6	30

#	Article	IF	CITATIONS
109	Circulating levels of tumour necrosis factor-α and its soluble receptors are increased in the blood of patients with amyotrophic lateral sclerosis. Neuroscience Letters, 2000, 287, 211-214.	2.1	187
110	Somatosensory and motor evoked potentials at different stages of recovery from severe traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 1999, 80, 33-39.	0.9	33
111	H-reflex changes in the course of amyotrophic lateral sclerosis. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1997, 104, 411-417.	2.0	14
112	An open-randomized clinical trial of selegiline in amyotrophic lateral sclerosis. Journal of Neurology, 1994, 241, 223-227.	3.6	33
113	Short-latency neck muscle responses to vertical body tilt in normal subjects and in patients with spasmodic torticollis. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1994, 93, 265-275.	2.0	19
114	Advantages and Pitfalls in Experimental Models Of ALS. , 0, , .		2
115	Gastrointestinal Status and Microbiota Shaping in Amyotrophic Lateral Sclerosis: A New Frontier for Targeting?. , 0, , 141-158.		2