Virginia Danciu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8368188/publications.pdf

Version: 2024-02-01

	430754	477173
986	18	29
citations	h-index	g-index
- 6		1007
56	56	1327
docs citations	times ranked	citing authors
	citations 56	986 18 citations h-index 56 56

#	Article	IF	CITATIONS
1	Pyrolysis and combustion of polystyrene composites based on graphene oxide functionalized with 3-(methacryloyloxy)-propyltrimethoxysilane. Journal of Polymer Engineering, 2021, 41, 615-626.	0.6	3
2	Optical Properties of Composites Based on Graphene Oxide and Polystyrene. Molecules, 2020, 25, 2419.	1.7	14
3	Morphological and structural investigation of the poly(vinyl chloride) / graphene oxide composites. Studia Universitatis Babes-Bolyai Chemia, 2020, 65, 245-258.	0.1	2
4	Detailed Investigation of Phenol Degradation on Au/TiO ₂ Composite Materials. Journal of Nanoscience and Nanotechnology, 2019, 19, 407-413.	0.9	5
5	Insights into the morphological and structural particularities of highly sensitive porous bismuth-carbon nanocomposites based electrochemical sensors. Sensors and Actuators B: Chemical, 2018, 268, 398-410.	4.0	15
6	Mapping the Photocatalytic Activity and Ecotoxicology of Au, Pt/TiO ₂ Composite Photocatalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 12993-13006.	3.2	16
7	Versatile self-assembled graphene oxide membranes obtained under ambient conditions by using a water–ethanol suspension. Journal of Materials Chemistry A, 2017, 5, 2132-2142.	5. 2	26
8	Impact of drying procedure on the morphology and structure of TiO2 xerogels and the performance of dye sensitized solar cells. Journal of Sol-Gel Science and Technology, 2017, 81, 693-703.	1.1	12
9	Shape tailored Pd nanoparticles' effect on the photocatalytic activity of commercial TiO 2. Catalysis Today, 2017, 284, 137-145.	2.2	13
10	Synthesis of Shape-Tailored WO3 Micro-/Nanocrystals and the Photocatalytic Activity of WO3/TiO2 Composites. Materials, 2016, 9, 258.	1.3	28
11	Carbon Aerogel as Electrode Material for Improved Direct Electron Transfer in Biosensors Incorporating Cellobiose Dehydrogenase. Electroanalysis, 2016, 28, 2311-2319.	1.5	16
12	Methanol oxidation at carbon paste electrodes modified with (Pt–Ru)/carbon aerogels nanocomposites. Materials Chemistry and Physics, 2016, 172, 179-188.	2.0	9
13	Changes in the microbiological and chemical characteristics of white bread during storage in paper packages modified with Ag/TiO2–SiO2, Ag/N–TiO2 or Au/TiO2. Food Chemistry, 2016, 197, 790-798.	4.2	31
14	Shape-controlled agglomeration of TiO 2 nanoparticles. New insights on polycrystallinity vs. single crystals in photocatalysis. Ceramics International, 2016, 42, 3077-3087.	2.3	22
15	Preparation of TiO2/WO3 composite photocatalysts by the adjustment of the semiconductors' surface charge. Materials Science in Semiconductor Processing, 2016, 42, 66-71.	1.9	34
16	Synthesis and characterization of TiO2/C nanomaterials: Applications in water treatment. Physica Status Solidi (B): Basic Research, 2015, 252, 2503-2511.	0.7	14
17	Synthesis and optical properties of TiO2-based magnetic nanocomposites. Applied Surface Science, 2015, 336, 335-342.	3.1	5
18	"Crystallographic―holes: new insights for a beneficial structural feature for photocatalytic applications. Nanoscale, 2015, 7, 5776-5786.	2.8	11

#	Article	IF	CITATIONS
19	Photocatalytic, Morphological and Structural Properties of the TiO2-SiO2-Ag Porous Structures Based System. Materials, 2015, 8, 1059-1073.	1.3	20
20	Differently Shaped Au Nanoparticles: A Case Study on the Enhancement of the Photocatalytic Activity of Commercial TiO2. Materials, 2015 , 8 , $162-180$.	1.3	12
21	Bismuth doped carbon xerogel nanocomposite incorporated in chitosan matrix for ultrasensitive voltammetric detection of Pb(II) and Cd(II). Sensors and Actuators B: Chemical, 2015, 220, 712-719.	4.0	46
22	Polyhedral Pt vs. spherical Pt nanoparticles on commercial titanias: Is shape tailoring a guarantee of achieving high activity?. Journal of Catalysis, 2015, 325, 156-167.	3.1	24
23	Silver functionalized titania-silica xerogels: Preparation, morpho-structural and photocatalytic properties, kinetic modeling. Journal of Alloys and Compounds, 2015, 648, 890-902.	2.8	18
24	Pt/N–TiO2 Aerogel Composites Used for Hydrogen Production Via Photocatalysis Process. Catalysis Letters, 2014, 144, 1955-1961.	1.4	16
25	Recent progress in the synthesis of magnetic titania/iron-based, composite nanoparticles manufactured by laser pyrolysis. Applied Surface Science, 2014, 302, 198-204.	3.1	12
26	Structural investigations of TiO2–WO3–Au porous composites. Journal of Molecular Structure, 2014, 1073, 150-156.	1.8	10
27	TiO2/WO3/Au nanoarchitectures' photocatalytic activity, "from degradation intermediates to catalysts' structural peculiaritiesâ€, Part I: Aeroxide P25 based composites. Applied Catalysis B: Environmental, 2014, 147, 508-517.	10.8	37
28	Photocatalytic hydrogen production using TiO2–Pt aerogels. Chemical Engineering Journal, 2014, 242, 96-101.	6.6	66
29	Commercial and home-made nitrogen modified titanias. A short reflection about the advantageous/disadvantageous properties of nitrogen doping in the frame of their applicability. Journal of Molecular Structure, 2014, 1073, 157-163.	1.8	9
30	Iron doped carbon aerogel – New electrode material for electrocatalytic reduction of H2O2. Materials Chemistry and Physics, 2013, 138, 893-898.	2.0	29
31	Alpha-Cypermethrin Pesticide Adsorption on Carbon Aerogel and Xerogel. Separation Science and Technology, 2013, 48, 2649-2658.	1.3	9
32	The photocatalytic activity of TiO2/WO3/noble metal (Au or Pt) nanoarchitectures obtained by selective photodeposition. Catalysis Today, 2013, 208, 19-27.	2.2	81
33	Structural evolution and optical properties of C-coated TiO2 nanoparticles prepared by laser pyrolysis. Applied Surface Science, 2013, 278, 295-300.	3.1	15
34	Behavior of gold nanoparticles in a titania aerogel matrix: Photocatalytic activity assessment and structure investigations. Chinese Journal of Catalysis, 2013, 34, 734-740.	6.9	19
35	New insights regarding the calcination as a critical parameter in the synthesis of sol–gel made titania powders. Journal of Sol-Gel Science and Technology, 2013, 65, 277-282.	1.1	5
36	Weighting the influence of TiO2 anatase/brookite ratio in TiO2–Ag porous nanocomposites on visible photocatalytic performances. Materials Chemistry and Physics, 2013, 141, 234-239.	2.0	8

#	Article	IF	Citations
37	Comparative Study of Two Types of Iron Doped Carbon Aerogels for Electrochemical Applications. Journal of New Materials for Electrochemical Systems, 2013, 16, 097-101.	0.3	0
38	Preparation, characterization and gas permeation investigation of resorcinol-formaldehyde polymer or carbon xerogels/tubular ceramic composites. Acta Chimica Slovenica, 2013, 60, 343-50.	0.2	2
39	TiO ₂ /WO ₃ /Au/MWCNT composite materials for photocatalytic hydrogen production: Advantages and drawâ€backs. Physica Status Solidi (B): Basic Research, 2012, 249, 2592-2595.	0.7	14
40	Correlating the visible light photoactivity of N-doped TiO2 with brookite particle size and bridged-nitro surface species. Catalysis Communications, 2012, 17, 1-7.	1.6	23
41	Efficient dual functionality of highly porous nanocomposites based on TiO2 and noble metal particles. Journal of Alloys and Compounds, 2011, 509, 2672-2678.	2.8	30
42	The influence of rapid heat treatment in still air on the photocatalytic activity of titania photocatalysts for phenol and monuron degradation. Applied Catalysis B: Environmental, 2011, 101, 461-470.	10.8	40
43	Synthesis and structural characteristics of nitrogen doped TiO2 aerogels. Microporous and Mesoporous Materials, 2010, 132, 80-86.	2.2	41
44	Structural characterisation of binary SiO ₂ /TiO ₂ nanoparticle aerogels by X-ray scattering. Journal of Physics: Conference Series, 2009, 182, 012066.	0.3	4
45	TiO2– based systems for photoelectrochemical generation of solar hydrogen. Journal of Physics: Conference Series, 2009, 182, 012055.	0.3	2
46	Nanocrystalline semiconductor materials for solar water-splitting. Journal of Alloys and Compounds, 2009, 483, 445-449.	2.8	8
47	Porous nanoarchitectures based on TiO2 aerogels and Au particles as potential SERS sensor for monitoring of water quality. Vibrational Spectroscopy, 2008, 48, 206-209.	1.2	19
48	Synthesis and structural characteristics of carbon aerogels with a high content of Fe, Co, Ni, Cu, and Pd. Journal of Non-Crystalline Solids, 2006, 352, 2772-2777.	1.5	56
49	Photothermal and photocatalytic processes on TiO2 based materials prepared by sol-gel method. Journal of Sol-Gel Science and Technology, 2006, 37, 175-178.	1.1	9
50	Indirect reduction of carbonyl and dinitro derivatives by an electrogenerated titanium (III) complex in non aqueous medium. Electrochimica Acta, 1998, 43, 3217-3225.	2.6	1
51	Electroréduction de dérivés dinitrés aromatiques. V. influences du matériau d'électrode et de systèmes rédox sur les réductions du 4,4′-dinitrodibenzyle et de l'acide 4,4′-dinitrostilbène-2,2′-disulfonique. Canadian Journal of Chemistry, 1996, 74, 1409-1417.	0.6	3
52	Determination of $4,4\hat{a}\in^2$ -diaminostilbene- $2,2\hat{a}\in^2$ -disulfonic acid by thin-layer chromatography and densitometry. Journal of Chromatography A, 1996, 727, 324-329.	1.8	5
53	Electroréduction de dérivés dinitrés aromatiques. III. RÃ1e du sulfate de titanyle comme médiateur redox. Canadian Journal of Chemistry, 1993, 71, 1136-1146.	0.6	9