Sung-Man Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8368097/publications.pdf

Version: 2024-02-01

43 43 43 2187
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Achieving High-Performance Spherical Natural Graphite Anode through a Modified Carbon Coating for Lithium-lon Batteries. Energies, 2021, 14, 1946.	3.1	9
2	Electrochemical properties of polydopamine coated Ti-Si alloy anodes for Li-ion batteries. Electrochimica Acta, 2016, 222, 1200-1209.	5.2	15
3	Modification for Improving the Electrochemical Performance of Spherically-Shaped Natural Graphite as Anode Material for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2016, 163, A3078-A3086.	2.9	23
4	Water vapor barrier properties of Si–Zn–O/Al multilayer structures. Surface and Coatings Technology, 2015, 275, 219-223.	4.8	1
5	High-performance characteristics of silicon inverse opal synthesized by the simple magnesium reduction as anodes for lithium-ion batteries. Journal of Power Sources, 2015, 300, 182-189.	7.8	39
6	Synthesis and electrochemical characterization of anode material withÂtitanium–silicon alloy solid core/nanoporous silicon shell structures for lithium rechargeable batteries. Journal of Power Sources, 2015, 299, 537-543.	7.8	24
7	NH ₄ PF ₆ as a Structural Modifier for Building a Robust Carbon oated Natural Graphite Anode for Lithiumâ€Ion Batteries. ChemElectroChem, 2014, 1, 1672-1678.	3.4	10
8	Si/C composite lithium-ion battery anodes synthesized using silicon nanoparticles from porous silicon. Electrochimica Acta, 2014, 133, 73-81.	5.2	25
9	Effect of polymeric binder type on the thermal stability and tolerance to roll-pressing of spherical natural graphite anodes for Li-ion batteries. Journal of Power Sources, 2014, 248, 1191-1196.	7.8	59
10	A hard carbon/microcrystalline graphite/carbon composite with a core-shell structure as novel anode materials for lithium-ion batteries. Electrochimica Acta, 2014, 135, 27-34.	5.2	59
11	A contribution to the progress of high energy batteries: A metal-free, lithium-ion, silicon–sulfur battery. Journal of Power Sources, 2012, 202, 308-313.	7.8	155
12	Electrochemical and interfacial behavior of a FeSi2.7 thin film electrode in an ionic liquid electrolyte. Electrochimica Acta, 2011, 56, 9818-9823.	5.2	29
13	Effects of lithium phosphorous oxynitride film coating on electrochemical performance and thermal stability of graphite anodes. Journal of Physics and Chemistry of Solids, 2011, 72, 842-845.	4.0	7
14	Effects of Fe layer on Li insertion/extraction Reactions of Fe/Si Multilayer thin Film Anodes for Lithium Rechargeable Batteries. Journal of Electrochemical Science and Technology, 2011, 2, 193-197.	2.2	2
15	Effects of particle size on the thermal stability of lithiated graphite anode. Electrochimica Acta, 2009, 54, 3339-3343.	5.2	43
16	Effect of carbon coating on thermal stability of natural graphite spheres used as anode materials in lithium-ion batteries. Journal of Power Sources, 2009, 190, 553-557.	7.8	58
17	Fabrication and Electrochemical Characteristics of Crack-Resistant Si-Based Anode Materials for All-Solid-State Thin-Film Batteries. Electronic Materials Letters, 2009, 5, 13-17.	2.2	11
18	Electrochemical characterization of Ti–Si and Ti–Si–Al alloy anodes for Li-ion batteries produced by mechanical ball milling. Journal of Alloys and Compounds, 2009, 472, 461-465.	5.5	58

#	Article	IF	Citations
19	Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries. Journal of Power Sources, 2008, 176, 353-358.	7.8	125
20	Phase formation during mechanical alloying in the Ti–Si system. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 1099-1101.	5.6	14
21	Effect of carbon coating on electrochemical performance of hard carbons as anode materials for lithium-ion batteries. Journal of Power Sources, 2007, 166, 250-254.	7.8	48
22	Rapidly solidified Ti–Si alloys/carbon composites as anode for Li-ion batteries. Electrochimica Acta, 2006, 52, 1523-1526.	5.2	39
23	Structural Change in Si Phase of Feâ [•] Si Multilayer Thin-Film Anodes during Li Insertion/Extraction Reaction. Journal of the Electrochemical Society, 2006, 153, A455.	2.9	21
24	Silver alloying effect on the electrochemical behavior of Si–Zr thin film anodes. Journal of Power Sources, 2005, 146, 464-468.	7.8	15
25	Improvement of capacity and cyclability of Fe/Si multilayer thin film anodes for lithium rechargeable batteries. Electrochimica Acta, 2005, 50, 3390-3394.	5. 2	61
26	Electrochemical performance of modified synthetic graphite for lithium ion batteries. Journal of Materials Science, 2005, 40, 347-353.	3.7	6
27	Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries. Electrochemistry Communications, 2004, 6, 465-469.	4.7	186
28	Effect of carbon coating on elevated temperature performance of graphite as lithium-ion battery anode material. Journal of Power Sources, 2004, 128, 61-66.	7.8	25
29	Synthesis and electrochemical characterization of LixCoO2 for lithium-ion batteries. Materials Research Bulletin, 2003, 38, 1-9.	5.2	12
30	Electrical conductivity in Li–Si–P–O–N oxynitride thin-films. Journal of Power Sources, 2003, 123, 61-64.	7.8	45
31	An all-solid-state thin film battery using LISIPON electrolyte and Si–V negative electrode films. Electrochemistry Communications, 2003, 5, 32-35.	4.7	71
32	Fe/Si multi-layer thin film anodes for lithium rechargeable thin film batteries. Electrochemistry Communications, 2003, 5, 544-548.	4.7	74
33	Sn–Zr–Ag alloy thin-film anodes. Journal of Power Sources, 2003, 119-121, 106-109.	7.8	22
34	Siâ€"Zr alloy thin-film anodes for microbatteries. Journal of Power Sources, 2003, 119-121, 113-116.	7.8	27
35	Si (–Zr)/Ag multilayer thin-film anodes for microbatteries. Journal of Power Sources, 2003, 119-121, 117-120.	7.8	12
36	Amorphous Lithium Nickel Vanadate Thin-Film Anodes for Rechargeable Lithium Microbatteries. Electrochemical and Solid-State Letters, 2002, 5, A138.	2.2	21

Sung-Man Lee

#	Article	IF	CITATIONS
37	Lithium storage properties of nanocrystalline Ni3Sn4 alloys prepared by mechanical alloying. Journal of Power Sources, 2002, 112, 8-12.	7.8	82
38	Performance of tin-containing thin-film anodes for rechargeable thin-film batteries. Journal of Power Sources, 2002, 111, 345-349.	7.8	21
39	Graphite–FeSi alloy composites as anode materials for rechargeable lithium batteries. Journal of Power Sources, 2002, 112, 649-654.	7.8	135
40	The improvement of electrical properties of Pd-based contact to p-GaN by surface treatment. Journal of Electronic Materials, 2001, 30, 183-187.	2.2	17
41	Characteristics of carbon-coated graphite prepared from mixture of graphite and polyvinylchloride as anode materials for lithium ion batteries. Journal of Power Sources, 2001, 101, 206-212.	7.8	91
42	Stress effect on cycle properties of the silicon thin-film anode. Journal of Power Sources, 2001, 97-98, 191-193.	7.8	143
43	Lithium Insertion in SiAg Powders Produced by Mechanical Alloying. Electrochemical and Solid-State Letters, 2001, 4, A97.	2.2	71