Stefan Fronzek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8367820/publications.pdf

Version: 2024-02-01

49 papers

2,970 citations

172207 29 h-index 253896 43 g-index

52 all docs 52 docs citations

52 times ranked 4968 citing authors

#	Article	IF	Citations
1	Lessons from COVID-19 for managing transboundary climate risks and building resilience. Climate Risk Management, 2022, 35, 100395.	1.6	23
2	A Model-Based Response Surface Approach for Evaluating Climate Change Risks and Adaptation Urgency. Springer Climate, 2022, , 67-75.	0.3	1
3	Shared socioeconomic pathways for climate change research in Finland: co-developing extended SSP narratives for agriculture. Regional Environmental Change, 2021, 21, 1.	1.4	21
4	A conceptual framework for cross-border impacts of climate change. Global Environmental Change, 2021, 69, 102307.	3.6	41
5	Methodology to assess the changing risk of yield failure due to heat and drought stress under climate change. Environmental Research Letters, 2021, 16, 104033.	2.2	6
6	Determining sectoral and regional sensitivity to climate and socio-economic change in Europe using impact response surfaces. Regional Environmental Change, 2019, 19, 679-693.	1.4	21
7	Using impact response surfaces to analyse the likelihood of impacts on crop yield under probabilistic climate change. Agricultural and Forest Meteorology, 2019, 264, 213-224.	1.9	19
8	Implications of crop model ensemble size and composition for estimates of adaptation effects and agreement of recommendations. Agricultural and Forest Meteorology, 2019, 264, 351-362.	1.9	35
9	Modelling population structure in the context of urban land use change in Europe. Regional Environmental Change, 2019, 19, 667-677.	1.4	55
10	Predictive power of remote sensing versus temperatureâ€derived variables in modelling phenology of herbivorous insects. Remote Sensing in Ecology and Conservation, 2018, 4, 113-126.	2.2	16
11	How does inter-annual variability of attainable yield affect the magnitude of yield gaps for wheat and maize? An analysis at ten sites. Agricultural Systems, 2018, 159, 199-208.	3.2	36
12	Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment. Agricultural Systems, 2018, 159, 260-274.	3.2	68
13	Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change. Agricultural Systems, 2018, 159, 209-224.	3.2	47
14	Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications, 2018, 9, 4249.	5.8	230
15	Decomposing sources of uncertainty in climate change projections of boreal forest primary production. Agricultural and Forest Meteorology, 2018, 262, 192-205.	1.9	26
16	Quantifying and assessing the need and potential for assisted migration. , 2018, , .		0
17	Assessing the need and potential of assisted migration using species distribution models. Biological Conservation, 2016, 196, 60-68.	1.9	41
18	How can irrigated agriculture adapt to climate change? Insights from the Guadiana Basin in Spain. Regional Environmental Change, 2016, 16, 59-70.	1.4	64

#	Article	IF	Citations
19	Conservation of grassland butterflies in Finland under a changing climate. Regional Environmental Change, 2016, 16, 71-84.	1.4	7
20	Characterising vulnerability of the elderly to climate change in the Nordic region. Regional Environmental Change, 2016, 16, 43-58.	1.4	47
21	Vulnerability of cross-country skiing to climate change in Finland – An interactive mapping tool. Journal of Outdoor Recreation and Tourism, 2015, 11, 64-79.	1.3	25
22	Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Climate Research, 2015, 65, 87-105.	0.4	122
23	Does the protected area network preserve bird species of conservation concern in a rapidly changing climate?. Biodiversity and Conservation, 2013, 22, 459-482.	1.2	33
24	Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agricultural and Forest Meteorology, 2013, 170, 32-46.	1.9	148
25	Modelling shifts in agroclimate and crop cultivar response under climate change. Ecology and Evolution, 2013, 3, 4197-4214.	0.8	72
26	Climate Change, Northern Birds of Conservation Concern and Matching the Hotspots of Habitat Suitability with the Reserve Network. PLoS ONE, 2013, 8, e63376.	1.1	23
27	Projections of climate change impacts on crop production: A global and a Nordic perspective. Acta Agriculturae Scandinavica - Section A: Animal Science, 2012, 62, 166-180.	0.2	14
28	Projecting the future distribution of European potential natural vegetation zones with a generalized, tree speciesâ€based dynamic vegetation model. Global Ecology and Biogeography, 2012, 21, 50-63.	2.7	372
29	Scenarios for investigating risks to biodiversity. Global Ecology and Biogeography, 2012, 21, 5-18.	2.7	57
30	Representing two centuries of past and future climate for assessing risks to biodiversity in Europe. Global Ecology and Biogeography, 2012, 21, 19-35.	2.7	51
31	Evaluating sources of uncertainty in modelling the impact of probabilistic climate change on sub-arctic palsa mires. Natural Hazards and Earth System Sciences, 2011, 11, 2981-2995.	1.5	29
32	What would happen to barley production in Finland if global warming exceeded 4°C? A model-based assessment. European Journal of Agronomy, 2011, 35, 205-214.	1.9	94
33	Rapid spread of the wasp spider Argiope bruennichi across Europe: a consequence of climate change?. Climatic Change, 2011, 109, 319-329.	1.7	32
34	Assessing the vulnerability of European butterflies to climate change using multiple criteria. Biodiversity and Conservation, 2010, 19, 695-723.	1.2	71
35	Applying probabilistic projections of climate change with impact models: a case study for sub-arctic palsa mires in Fennoscandia. Climatic Change, 2010, 99, 515-534.	1.7	59
36	Establishment of a cross-European field site network in the ALARM project for assessing large-scale changes in biodiversity. Environmental Monitoring and Assessment, 2010, 164, 337-348.	1.3	10

#	Article	IF	CITATIONS
37	Climate and Peatlands. , 2010, , 85-121.		18
38	Leaf litter decomposition—Estimates of global variability based on Yasso07 model. Ecological Modelling, 2009, 220, 3362-3371.	1.2	187
39	An ecosystem modelâ€based estimate of changes in water availability differs from water proxies that are commonly used in species distribution models. Global Ecology and Biogeography, 2009, 18, 304-313.	2.7	52
40	Predicting range expansion of the map butterfly in Northern Europe using bioclimatic models. Biodiversity and Conservation, 2008, 17, 623-641.	1,2	48
41	Changes in frost, snow and Baltic sea ice by the end of the twenty-first century based on climate model projections for Europe. Climatic Change, 2008, 86, 441-462.	1.7	107
42	Modelling the impacts of European emission and climate change scenarios on acid-sensitive catchments in Finland. Hydrology and Earth System Sciences, 2008, 12, 449-463.	1.9	16
43	Assessing uncertainties in climate change impacts on resource potential for Europe based on projections from RCMs and GCMs. Climatic Change, 2007, 81, 357-371.	1.7	63
44	Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Climatic Change, 2007, 81, 123-143.	1.7	304
45	Potential effect of climate change on the distribution of palsa mires in subarctic Fennoscandia. Climate Research, 2006, 32, 1-12.	0.4	68
46	Spatial modelling of palsa mires in relation to climate in northern Europe. Earth Surface Processes and Landforms, 2004, 29, 1373-1387.	1.2	55
47	Climate change impacts on biodiversity: a short introduction with special emphasis on the ALARM approach for the assessment of multiple risks. BioRisk, 0, 5, 3-29.	0.2	3
48	Pan-European multi-crop model ensemble simulations of wheat and grain maize under climate change scenarios. Open Data Journal for Agricultural Research, 0, 6, 21-27.	1.3	2
49	Predicting distribution patterns and recent northward range shift of an invasive aquatic plant: Elodea canadensis in Europe. BioRisk, 0, 2, 1-32.	0.2	31