Claas Teichmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8367775/publications.pdf Version: 2024-02-01

CLAAS TEICHMANN

#	Article	IF	CITATIONS
1	The CORDEX-CORE EXP-I Initiative: Description and Highlight Results from the Initial Analysis. Bulletin of the American Meteorological Society, 2022, 103, E293-E310.	3.3	35
2	Assessing mean climate change signals in the global CORDEX-CORE ensemble. Climate Dynamics, 2021, 57, 1269.	3.8	63
3	Evaluation of the Large EUROâ€CORDEX Regional Climate Model Ensemble. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2019JD032344.	3.3	109
4	A new spatially distributed added value index for regional climate models: the EURO-CORDEX and the CORDEX-CORE highest resolution ensembles. Climate Dynamics, 2021, 57, 1403-1424.	3.8	40
5	Assessment of the European Climate Projections as Simulated by the Large EUROâ€CORDEX Regional and Global Climate Model Ensemble. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2019JD032356.	3.3	104
6	Climate hazard indices projections based on CORDEX-CORE, CMIP5 and CMIP6 ensemble. Climate Dynamics, 2021, 57, 1293.	3.8	83
7	Impact of air–sea coupling on the climate change signal over the Iberian Peninsula. Climate Dynamics, 2021, 57, 2325-2349.	3.8	5
8	Global exposure of population and landâ€use to meteorological droughts under different warming levels and <scp>SSPs</scp> : A <scp>CORDEX</scp> â€based study. International Journal of Climatology, 2021, 41, 6825-6853.	3.5	26
9	Editorial for the CORDEX-CORE Experiment I Special Issue. Climate Dynamics, 2021, 57, 1265-1268.	3.8	27
10	Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data. Journal of Climate, 2020, 33, 3635-3661.	3.2	230
11	Analysis of Compound Climate Extremes and Exposed Population in Africa Under Two Different Emission Scenarios. Earth's Future, 2020, 8, e2019EF001473.	6.3	66
12	Regional climate downscaling over Europe: perspectives from the EURO-CORDEX community. Regional Environmental Change, 2020, 20, 1.	2.9	227
13	European daily precipitation according to EURO-CORDEX regional climate models (RCMs) and high-resolution global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP). Geoscientific Model Development, 2020, 13, 5485-5506.	3.6	29
14	Summertime precipitation extremes in a EURO-CORDEX 0.11° ensemble at an hourly resolution. Natural Hazards and Earth System Sciences, 2019, 19, 957-971.	3.6	50
15	Evaluation of New CORDEX Simulations Using an Updated Köppen–Trewartha Climate Classification. Atmosphere, 2019, 10, 726.	2.3	65
16	Climate Impacts in Europe Under +1.5°C Global Warming. Earth's Future, 2018, 6, 264-285.	6.3	130
17	Simulation of medicanes over the Mediterranean Sea in a regional climate model ensemble: impact of ocean–atmosphere coupling and increased resolution. Climate Dynamics, 2018, 51, 1041-1057.	3.8	46
18	European climate change at global mean temperature increases of 1.5 and 2â€ [−] °C above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models. Earth System Dynamics, 2018, 9, 459-478.	7.1	114

CLAAS TEICHMANN

#	Article	IF	CITATIONS
19	Estimates of Presentâ€Ðay and Future Climatologies of Freezing Rain in Europe Based on CORDEX Regional Climate Models. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,291.	3.3	5
20	Avoiding Extremes: Benefits of Staying below +1.5 °C Compared to +2.0 °C and +3.0 °C Global Warming. Atmosphere, 2018, 9, 115.	2.3	26
21	Future Changes in European Severe Convection Environments in a Regional Climate Model Ensemble. Journal of Climate, 2017, 30, 6771-6794.	3.2	82
22	Landâ€atmosphere coupling in EURO ORDEX evaluation experiments. Journal of Geophysical Research D: Atmospheres, 2017, 122, 79-103.	3.3	84
23	A multi-model climate response over tropical Africa at +2 °C. Climate Services, 2017, 7, 87-95.	2.5	61
24	Regionale Klimamodellierung. , 2017, , 27-35.		1
25	The Vulnerability, Impacts, Adaptation and Climate Services Advisory Board (VIACS AB v1.0) contribution to CMIP6. Geoscientific Model Development, 2016, 9, 3493-3515.	3.6	31
26	Climate change impacts on the power generation potential of a European mid-century wind farms scenario. Environmental Research Letters, 2016, 11, 034013.	5.2	120
27	Precipitation in the EURO-CORDEX \$\$0.11^{circ }\$\$ 0 . 11 â and \$\$0.44^{circ }\$\$ 0 . 44 â simulations: high resolution, high benefits?. Climate Dynamics, 2016, 46, 383-412.	3.8	215
28	Daily precipitation statistics in a EURO-CORDEX RCM ensemble: added value of raw and bias-corrected high-resolution simulations. Climate Dynamics, 2016, 47, 719-737.	3.8	85
29	Robustness of Ensemble Climate Projections Analyzed with Climate Signal Maps: Seasonal and Extreme Precipitation for Germany. Atmosphere, 2015, 6, 677-698.	2.3	55
30	The impact of climate change on photovoltaic power generation in Europe. Nature Communications, 2015, 6, 10014.	12.8	236
31	The European climate under a 2 °C global warming. Environmental Research Letters, 2014, 9, 034006.	5.2	292
32	Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geoscientific Model Development, 2014, 7, 1297-1333.	3.6	711
33	EURO-CORDEX: new high-resolution climate change projections for European impact research. Regional Environmental Change, 2014, 14, 563-578.	2.9	1,758
34	Case study for the assessment of the biogeophysical effects of a potential afforestation in Europe. Carbon Balance and Management, 2013, 8, 3.	3.2	26
35	The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Climate Dynamics, 2013, 41, 2555-2575.	3.8	290
36	Beyond vulnerability assessment. Nature Climate Change, 2013, 3, 942-943.	18.8	9

CLAAS TEICHMANN

#	Article	IF	CITATIONS
37	How Does a Regional Climate Model Modify the Projected Climate Change Signal of the Driving GCM: A Study over Different CORDEX Regions Using REMO. Atmosphere, 2013, 4, 214-236.	2.3	104
38	The regional aerosol-climate model REMO-HAM. Geoscientific Model Development, 2012, 5, 1323-1339.	3.6	19
39	Assessing the Transferability of the Regional Climate Model REMO to Different COordinated Regional Climate Downscaling EXperiment (CORDEX) Regions. Atmosphere, 2012, 3, 181-199.	2.3	219
40	Downscaling extreme month-long anomalies in southern South America. Climatic Change, 2010, 98, 379-403.	3.6	45
41	A high-resolution 43-year atmospheric hindcast for South America generated with the MPI regional model. Climate Dynamics, 2009, 32, 693-709.	3.8	23
42	Regional effects and efficiency of flue gas desulphurization in the Carpathian Basin. Atmospheric Environment, 2007, 41, 8500-8510.	4.1	2
43	Understanding the polarization signal of spherical particles for microwave limb radiances. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 101, 179-190.	2.3	8
44	A polarized discrete ordinate scattering model for simulations of limb and nadir long-wave measurements in 1-D/3-D spherical atmospheres. Journal of Geophysical Research, 2004, 109, .	3.3	68
45	User tailored results of a regional climate model ensemble to plan adaption to the changing climate in Germany. Advances in Science and Research, 0, 16, 241-249.	1.0	7